IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 1536 documents. Displaying 25 entries per page.


Steam Pre-conditioning Treatment Prior to Acetylation: Impact on Dimensional Stability, Moisture Response Behaviour, and White-Rot Fungal Resistance of Hevea brasiliensis and Mitragyna ciliata Wood
2022 - IRG/WP 22-40930
The effect of steam pre-conditioning treatment on the dimensional stability, moisture response behaviour, and durability against white-rot fungus P. chrysosporium of acetylated Hevea brasiliensis and Mitragyna ciliata wood species were assessed. Defect-free specimens of both species from the top, middle, and base positions were selected, prepared according to ASTM D143-09 & ASTM D-2017 standards a...
E Uchechukwu Opara, J Mayowa Owoyemi, J Adeola Fuwape


Biological assessment of bio-based phase change materials in wood for construction applications
2022 - IRG/WP 22-40935
Solid wood can serve multi-functionality for energy savings in buildings. The study reveals the results of bio-deterioration and degradation of solid Scots pine wood used to incorporate single or multicomponent fatty acid mixtures as bio-based phase change materials (BPCMs). The sapwood samples were impregnated with capric acid (CA), methyl palmitate (MP), lauryl alcohol (LA) and a mixture of coco...
S Palanti, A Temiz, G Köse Demirel, G Hekimoğlu, A Sari, M Nazari, J Gao, M Jebrane, T Schnabel, N Terziev


Mechanical Properties of Thermally Modified Wood after twelve Months of Field Exposure
2022 - IRG/WP 22-40945
This study aimed to evaluate the durability and mechanical properties of two different woood species, namely beech (Fagus sp.) and silver fir (Abies alba), from Bosnia and Herzegovina thermally modified at three different temperatures and duration at maximum temperature. Samples of the mentioned wood species wood (Abies alba) were prepared according to EN 408+A1 standard. The maximum 4-point bendi...
R Hasanagić, M Bahmani, L Fathi, M Humar


Evaluation of Decay Resistance for the Larch Wood Heat-treated with Superheated Steam
2022 - IRG/WP 22-40956
Heat-treatment of wood is a process that involves applying heat ranging 160–260°C to improve its physico-mechanical properties and resistance against wood rot fungi. The level of the changes in the wood properties by heat-treatment differs depending on the temperature and duration of heat-treatment, as well as the types of heat transfer media used for heat-treatment. The heat-treatment on wood ...
Y Park, S-M Yoon, H Kim, W-J Hwang


Assessing changes in hardness of furfurylated wood on a nano-scale to mimic levels experienced by the marine wood-boring crustacean, Limnoria
2023 - IRG/WP 23-11016
Wood-boring crustaceans and bivalves can cause severe damage to wooden structures in the marine environment, warranting the need for novel protection systems, such as chemical modifications. Furfurylation increases mechanical properties and resistance of timber species that would usually be susceptible to biodegradation by these borers, such as pine. In rapid laboratory and field testing, furfuryl...
L Martin, J Zekonyte, S Lande, M Westin, S Cragg


A novel cellulose-binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11019
Wood-rotting basidiomycetes are the major organisms decomposing wood in nature. They are classified into two groups based on their decay modes; white-rot fungi and brown-rot fungi. White-rot fungi secrete various cellulolytic enzymes during the wood degradation process. The enzymes are known to be often appended with a cellulose binding domain (CBD) which assists the activity of catalytic domain. ...
Y Kojima, N Sunagawa, M Aoki, M Wada, K Igarashi, M Yoshida


Morphological observation of wood at the early stages of decay in brown rot and white rot
2023 - IRG/WP 23-11020
Wood rotting fungi, the fungal species causing biodeterioration for wood building, are generally classified into white-rot, brown-rot and soft-rot fungi based on their decay modes. Since white-rot and brown-rot fungi are known to reduce wood strength significantly, it is important to clarify the mechanisms of their wood degradation. White-rot fungi reduce wood strength as the decay progress and de...
R Tsukida, T Hatano, Y Kojima, Y Horikawa, S Nakaba, R Funada, M Yoshida


The cellulose binding mechanism of a novel cellulose binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11021
In nature, wood decay is caused by various wood-rotting basidiomycetes. Wood-rotting basidiomycete are mainly divided into white-rot fungi and brown-rot fungi. Their main carbon source is cellulose of the wood cell wall during wood decay, and they produce a variety of enzymes to decompose cellulose. The cellulolytic enzymes often possess a cellulose binding domain (CBD) as an additional domain con...
M Aoki, Y Kojima, M Wada, M Yoshida


Mini-stakes – an alternative test method for EN 252?
2023 - IRG/WP 23-20691
Market approval of wood treatment products requires knowledge and prove of long-term durability. Efficiency of wood treatment with a specific product is evaluated based on variety of tests, including penetration evaluation, leaching studies as well as decay tests. EN 252 standard test is a core method for wood durability evaluation in a ground contact, both for commercial product approval and scie...
R Digaitis, P Larsson Brelid, N Terziev, M Klamer, A W Christof, J Stenaek, N Morsing


Glued laminated poles - Progress report after 43 years of testing
2023 - IRG/WP 23-20692
In 1979, a number of glued laminated poles treated with CCA and creosote were placed in a greenhouse in Uppsala, in the Simlångsdalen test field in south-western Sweden and in a power lane in Vuollerim in northern Sweden, in order to study their resistance against biological degradation. The test poles were treated in a two-step process. All laminations of Scots pine (Pinus sylvestris) were first...
J Jermer, M Westin, N Terziev


Laboratory durability testing of preservative treated wood products – first attempts and observations
2023 - IRG/WP 23-20697
In the past, durability classes (DC) had been assigned to wood species, sometimes also to homogenously modified wood-based materials such as thermally modified wood. More recently, some standards allow for classifying the biological durability of chemically modified wood, preservative treated wood and wood composites. Even treated products may be subject to durability classification, but necessary...
C Brischke, M Sievert, M Schilling, S Bollmus


Performance of a noise barrier with different wood materials – results from a service trial after 25 years of exposure
2023 - IRG/WP 23-30776
In connection with the construction of the railway connection between Stockholm Arlanda airport and Stockholm city, an 11 km long noise barrier made of untreated European larch was built along the railway line. This provided an opportunity to implement a full-scale study comparing different untreated wood species and preservative treatments. Thus, in March 1996 ten test sections including untreate...
J Jermer, M Westin


Suitability of boron preservative treatment of minor species as framing in New Zealand buildings
2023 - IRG/WP 23-30778
The inclusion of alternative species to radiata pine, predominantly exotic species, in the building code (NZS 3602) raises questions as to whether they require preservative treatment and, if so, whether they can be adequately treated using current industry processes. Early research with boron indicated that the dip/diffusion method for green timber would give adequate preservative retention in sa...
D Page, I Simpson, T Singh


Challenges in managing very long-term field tests
2023 - IRG/WP 23-30779
Field testing of wood preservatives has been on-going in Petawawa, Ontario, Canada since at least 1937. Many of the treated roundwood posts from these early experiments are still in test, and include preservatives still used today, including creosote, copper naphthenate, pentachlorophenol and CCA. Performance data from selected experiments more than 50 years old are reported and we discuss some of...
R Stirling, D Wong


Field performance of MCA-treated wood in ground contact
2023 - IRG/WP 23-30782
Micronized Copper Azole (MCA) was evaluated for its ability to resist biodegradation at two Canadian test sites using Pacific silver fir and white spruce stakes, and lodgepole pine and red pine roundwood posts. After 12 years of exposure the treated stakes exhibited low to moderate levels of decay while the untreated controls had failed. When stakes were moved to an active termite site, the untrea...
C Wilson, J Zhang, R Stirling


Performance of treated Malaysian semantang bamboo (Gigantochloa scortechinii) - field and laboratory durability evaluation
2023 - IRG/WP 23-30788
Field performance of sematan bamboo, Gigantochloa scortechinii was evaluated under the Malaysian tropical climate, along with laboratory evaluation to white-rot fungi and mold. Starch was removed from the bamboo by submerging the bamboo in the river for 6-8 weeks, kiln-dried and cut to 300 mm (L) round bamboo and 25 mm (W) x 50 mm (L) stripe for the field and laboratory test respectively. Bamboo w...
S Lipeh, T Khadiran, Z Jalaludin, M K Anwar U


A novel wood preservative with vegetal extracts-cypermethrin mixture protects H2-weathered envelope-treated tropical hardwood kempas against Coptotermes termites
2023 - IRG/WP 23-30794
In accordance with sustainability development initiatives by commercial wood protection to conceive of cost-effective, environmentally acceptable wood treatment solutions replacing traditional biocides, this paper reports an aboveground subterranean termite test of termite-susceptible heartwood blocks of the tropical (Malaysian) structural hardwood kempas (Koompassia malaccensis) envelope-treated ...
D Messaoudi, A H H Wong


Envelope wood protection against subterranean termites under H2-hazard class tropical environment by a new generation wood preservative with vegetal extracts-cypermethrin mixtures
2023 - IRG/WP 23-30795
Wood protection industries in progressive economies globally are compelled to develop cost-effective, environmentally acceptable wood treatment solutions for long term carbon storage in wood materials/products while appealing to consumer demands for low environmental impact treated wood. A new generation wood preservative, based in part on 2% vegetal extracts and 0.16% cypermethrin components, has...
D Messaoudi, A H H Wong


Adhesion and performance of exterior wood coatings on chemically and thermally modified wood – Results from 5.5 years outdoor exposure
2023 - IRG/WP 23-40964
Non-durable softwood and hardwood species were treated with the water-soluble cyclic N-methylol compounds 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) and methylated DMDHEU. One half of the modified specimens were coated with a waterborne acrylic coating system prior a natural weathering for 5.5 years according to EN 927-3 (2020). By frequent evaluations, the impact of chemical modifications ...
L Emmerich, H Militz


The appropriateness of central one-ninth or core retentions as a means of demonstrating penetration compliance
2023 - IRG/WP 23-40976
Treatment quality is in general terms dependent upon the preservative retention, and how the preservative is distributed throughout the cross-section of the treated article in question, i.e. the penetration of the preservative. Of these two fundamental qualities that are intrinsically linked to treatment quality, penetration is in general terms the most subjective. The determination of retention i...
D Humphfrey, B Skewes


Research on gaseous COS degradation by brown-rot fungus Gloeophyllum trabeum
2024 - IRG/WP 24-11033
Physiological studies of wood rotting fungi have mostly focused on the metabolism of carbon and nitrogen sources, which constitute the dominants components of wood. On the other hand, despite the physiological importance of trace elements such as sulfur, studies on their acquisition sources and metabolic pathways are limited. Until now, wood rotting fungi have been thought to utilize slight amount...
R Iizuka, R Tsukida, Y Katayama, M Yoshida


Characterization of cell wall morphology and water-soluble extractives in Japanese larch decayed by white-pocket-rot fungi
2024 - IRG/WP 24-11034
Porodaedalea chrysoloma (Fr.) Fiasson & Niemelä is a basidiomycete that can cause white-rot decay in Japanese larch (Larix kaempferi) heartwood. P. chrysoloma is a white-rot fungus with a unique pattern that causes white-pocket-rot in the xylem of Japanese larch. However, the mechanism by which P. chrysoloma yields the pattern of white-pocket-rot in Japanese larch heartwood remains unclear. Thus,...
Y Mori, H Arai, T Ito, H Hashitani, K Yamashita, Y Ota, M Kiguchi


On the use of miniaturized wood specimens in fungal decay experiments – mini-blocks versus EN 113 test specimens
2024 - IRG/WP 24-11044
Preliminary evaluation and classification of wood durability against decay fungi using laboratory monoculture experiments has been a longstanding practice because these tests offer quicker results than field tests. Various methods, including miniaturized specimen formats and different incubation periods, have been explored to expedite decay processes and assess wood preservation efficacy. The 'min...
C Brischke, G Alfredsen


A novel cellulose-binding domain from the brown-rot fungus that can be used to evaluate cellulose in wood
2024 - IRG/WP 24-11046
Wood-rotting basidiomycetes are the primary microorganisms that decay wood in nature. They are classified as white-rot fungi and brown-rot fungi by the difference in decaying types. White-rot fungi secrete a variety of cellulolytic enzymes during wood degradation. These enzymes often have an additional cellulose-binding domain (CBD) that adsorbs to the cellulose surface and localizes the catalytic...
Y Kojima, N Sunagawa, S Tagawa, T Hatano, S Nakaba, M Aoki, M Wada, K Igarashi, M Yoshida


Laboratory and field evaluations of bio-based termiticide containing Arnica extract from Berkem Biosolutions® against native and Formosan subterranean termites
2024 - IRG/WP 24-11049
Arnica extract from Berkem Biosolutions® is a 100% plant-based ingredient, rich in active molecules, particularly polyphenols, specially adapted to the needs and challenges of termite protection. The efficacy performance of a bio-based termiticide product containing Arnica extract from Berkem Biosolutions® had been evaluated both in soil treatment and in wood protection treatment against native ...
D Messaoudi, J Curole, Q Wu


Previous Page | Next Page