IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 252 documents. Displaying 25 entries per page.


Resistance of modified wood to termite attack assessed in laboratory and field testing: A review of internal research
2018 - IRG/WP 18-40824
Within the past decades, new wood modification technologies have been investigated in order to improve certain wood characteristics and enable the use of timber products for outdoor applications. Some of these non-biocidal technologies have been developed and commercialized recently. Thus, various material properties were studied intensively and shown to be improved. To a great extent, previous re...
L Emmerich, P Gascón-Garrido, H Militz


Long-term performance of DMDHEU-treated wood exposed in ground, above ground and in the marine environment
2018 - IRG/WP 18-40825
Chemical wood modification with N-methylol compounds such as 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU) has been studied intensively since the 1990s. Research of the past years focused on treatment of Scots pine (Pinus sylvestris L.) and European beech wood (Fagus sylvatica L.) and was shown to be applicable to improve specific material properties. A high resistance against wood-destroying ...
L Emmerich, H Militz, C Brischke


Natural durability of four Tunisian Eucalyptus wood species and their respective compositions in extractives
2019 - IRG/WP 19-10942
In the 50’s, Tunisia government introduced more than 11 Eucalyptus wood species. Eucalyptus species were planted in Tunisia in different arboreta throughout the country for close observation and adaptation to climate and soil. These fast-growing wood species were mainly used as fire wood, for the production of mine wood and to fight against the erosion. These tree species were adapted themselve...
S Ben Ayed, M T Elaieb, S Dumarçay, B De Freitas Homen De Faria, M-F Thévenon, P Gerardin, K Candelier


Chemical defense of trees and wood natural durability: from protection to valorization
2019 - IRG/WP 19-10943
Natural durability of wood is defined as “the inherent resistance of wood against various wood-destroying organisms” (European standard EN 350-1). This property is due in particular to heartwood extractives. However, the wood natural durability is included in a wider defense system, and other organs such as bark and roots also host protective compounds. Studying the mechanisms on which global ...
E Houel, D Stien, N Amusant


Determining the natural durability on xylarium samples: mini-block test, wood powder and chemical profiling
2019 - IRG/WP 19-10944
Xylaria, or wood collections, can be considered sleeping beauties in terms of wood technological and biological output. In this study we focus on determining the natural durability of xylarium specimens from the Federal Xylarium in the Royal Museum for Central Africa. The Federal Xylarium contains over 80,000 specimens, covering more than 13,000 species, mainly from Central Africa. These specimens...
V Deklerck, L De Ligne, J Van den Bulcke, E Espinoza, H Beeckman, J Van Acker


The use of bicine and tricine as possible Maillard reagents in a combined thermal/chemical modification of beech
2019 - IRG/WP 19-40852
The effects of thermal modification have been well established, particularly in terms of reductions in mechanical performance. In recent years, there has been an increase in studies related to the Maillard reaction. More commonly associated with food chemistry, it involves the reaction of amines and reducing sugars during cooking procedures. This paper has attempted to combine the use of amines an...
D Jones, C-M Popescu, D Krzisnik, M Hocevar, M Humar, M-C Popescu


Development of beech wood thermo-chemical modification treatments based on different vinylic derivatives of glycerol and polyglycerol
2019 - IRG/WP 19-40855
In this study, a combination between chemical and thermal wood modification has been investigated. Seven types of a low concentration of 10% aqueous additive solution of vinylicglycerol [glycerol-maleic anhydride (Gly-MA), glycidyl methacrylate (GM), and Glycerol methacrylate-maleic anhydride (GM/MA(2eq))], vinylicpolyglycerol [polyglycerol-maleic anhydride (PG-MA), polyglycerol methacrylate (PGM...
M Mubarok, S Dumarcay, H Militz, K Candelier, M-F Thevenon, P Gerardin


Chemical Analysis of Southern Pine Pole Stubs Sixty Months Following Treatment with a Methylisothiocyanate-Based Solid Fumigant Stick
2019 - IRG/WP 19-30740
Methylisothiocyanate-based fumigants have been commercially used in the United States for over 35 years to control internal decay in utility poles and other wooden structures with little technological advancement. The most recently commercialized methylisothiocyanate-based fumigant is chemically known as dazomet. Dazomet is a free-flowing powder or granule that decomposes in the presence of mois...
D J Herdman, T Pope, R R Browning


Study on the ability of wood-destroying fungi to grow through chemically modified wood
2019 - IRG/WP 19-40858
Over the last decades, chemical wood modification technologies were developed to increase the resistance against attack by wood-destroying organisms without using biocides. Most of those technologies are based on an impregnation step initially. In most treated wood products, mainly by using solid wood in thicker dimensions as in posts, poles, sleepers, deckings etc. it is known that wood impregnat...
L Emmerich, S Strohbusch, C Brischke, S Bollmus, H Militz


Water interactions in wood polyesterified with sorbitol and citric acid
2020 - IRG/WP 20-40888
Polyesterifcation of wood with sorbitol and citric acid seems to be a promising chemical wood modification technique that is both low-cost and produced from bio-based chemicals. An interesting aspect of the modification is the interaction of water with the polyesterified wood since the relationship with moisture appears to be unique compared to other wood modification systems. This communication p...
G Beck, A Treu, E Larnøy


Evaluation of chemical densification of three hardwood species through in-situ electron beam polymerization
2020 - IRG/WP 20-40893
Hardwoods are the most suitable species for wood flooring for their appearance as well as their hardness. Yet, improving hardness can provide substantial benefit for the wood flooring market. Chemical densification of wood and in-situ polymerization through electron beam technology was chosen to increase hardness of three hardwoods (Yellow birch (YB) (Betula alleghaniensis Britt.), Sugar maple (SM...
J Triquet, P Blanchet, V Landry


Comprehensive protection of timber in seawater
2020 - IRG/WP 20-10970
The hazard of wood in seawater can be divided into two areas: Below the water level, shipworm (Teredo navalis) and gribble (Limnoria lignorum) can attack non-resistant or insufficiently protected wood; above the water level, there is a risk by wood-destroying fungi and, to a lesser extent, insects. In a national project funded by the Deutsche Bundesstiftung Umwelt (DBU, German Federal Environmenta...
E Melcher, J Müller, T Huckfeldt


The influence of chemical compounds on wood cell wall to surface cracks
2020 - IRG/WP 20-40908
Degradation due to cracking and dimensional changes caused by drying, have a significantly negative impact on the preservation and durability of wood. Therefore, the prevention of surface cracking, which tends to occur during the drying process, is vital. High temperature set drying is one of the most effective methods for preventing wood surface cracking. It begins with softening the wood at a hi...
R Suzuki, Y Mori, K Yoshihiro, K Yamashita, M Kiguchi


The iron reduction by chemical components of wood blocks decayed by wood rotting fungi
2021 - IRG/WP 21-10979
Brown-rot fungi, a group of wood rotting fungi, is well known to be one of major microorganisms that cause the deterioration of wooden buildings in Japan and have been considered to use chelator-mediated Fenton (CMF) reaction in concert with hydrolytic and redox enzymes for degradation of wood cell wall. CMF can be described as a non-enzymatic degradation system that utilizes hydroxyl radicals pro...
R R Kondo, Y Horikawa, K Ando, B Goodell, M Yoshida


Mechanical and biological durability properties against soft-rot and subterranean termite in the field (grave-yard test) of beech wood impregnated with different derivatives of glycerol or polyglycerol and maleic anhydride followed by thermal modification in an opened or in a closed system
2021 - IRG/WP 21-40917
This paper presents mechanical and biological durability properties in soil beg test (soft-rot test) and field test (grave-yard test) against subterranean termite of the wood modified with an aqueous vinylic derivative of glycerol/polyglycerol or maleic anhydride cured in an opened or in a closed system. Wood modification was performed through impregnation of European beech (Fagus sylvatica) with ...
M Mubarok, H Militz, S Dumarcay, I W Darmawan, Y S Hadi, P Gerardin


Environmentally Friendly Wood Modification based on Tannin-Furfuryl alcohol - Effect on stabilisation, mechanical properties and decay durability
2022 - IRG/WP 22-40929
Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-f...
M Mubarok, E Azadeh, F O Akong, S Dumarçay, A Pizzi, C Charbonnier-Gérardin, P Gérardin


Surface chemical wood densification through in situ electron beam polymerization: description and dose study
2022 - IRG/WP 22-40933
Traditional wood chemical densification processes can be used to improve wood mechanical properties by increasing density of the material throughout its thickness. While mechanical surface densification has heavily been investigated, surface treatments involving impregnation of monomers remain unexplored. This study describes a new material, surface densified through lateral impregnation of acryla...
J Triquet, P Blanchet, V Landry


Chemical modification of cellulose nanofibrils for tailoring properties of composites
2022 - IRG/WP 22-40934
Due to its natural abundance, complete biodegradability and excellent properties, cellulose is one of the most promising materials for the production of bio composites, as well as one of the most promising fillers for biodegradable polymer composites. This is also true for nanocellulose. A large number of hydroxyl groups on the surface of fibers or fibrils enables a whole series of chemical reacti...
I Poljanšek, J Levanič, V Ž Bogataj, V Vek, P Oven


Optimized composition of alkyd emulsion with nanoparticles of iron oxide for enhancing protection of thermally modified wood
2022 - IRG/WP 22-40940
Thermal treatment is acknowledged as an environmentally friendly method to improve durability of wood and some of its properties, such as biological resistance, dimensional stability, reduced hygroscopy. Despite these improvements, when used outdoors, also thermally treated wood is subjected to the action of environmental factors, like solar radiation, moisture, precipitations, temperature, etc., ...
E Sansonetti, D Cīrule, I Andersone, B Andersons, E Kuka


Novel bio-based tannin/furfurylic alcohol thermosets: application to wood preservation
2022 - IRG/WP 22-40959
This project is integrated within the overall context of sustainable development and targets the valorization the wood industry by-products such as polyphenolic extractives, and in particular tannins. The objective targets the use of the same polymer used for production of tannin-furanic foams, but here for wood preservation to avoid the utilization of biocides. The aims is to the design of copoly...
C Gérardin-Charbonnier, E Azadeh, A Pizzi, P Gerardin


Improvement of durability of Scots pine against termites by impregnation with citric acid and glycerol followed by in situ polyesterification
2023 - IRG/WP 23-30777
Scots pine (Pinus sylvestris) sapwood samples were impregnated with solution containing citric acid (CA) and glycerol (Gly) followed by heating 140 °C according to already described procedure (L'hostis et al. 2018). The resulting modified woods were then used to evaluate the effect of chemical modification on the durability against termites. Two kinds of experiments were conducted for this purpos...
M Mubarok, J Damay, E Masson, E Fredon, Y S Hadi, I W Darmawan, P Gerardin


The influence of chemical and thermal modification on homogeneity between sapwood, heartwood, and transition wood of short rotation teak
2023 - IRG/WP 23-40961
Short rotation teak wood has low quality especially in durability. Heartwood presents sufficient natural durability and poor impregnability; meanwhile, most sapwood requires special treatment to increase its durability. The objective of this work was to investigate the effect of thermal or chemical treatment on homogenization between sapwood, heartwood, and transition wood for some selected proper...
R Martha, B George, W Darmawan, P Gerardin


The impact of pre-drying on treatment level variations of esterified solid wood analysed by X-ray densitometry
2023 - IRG/WP 23-40977
Wood modification requires homogenous treatment levels within the wood matrix to prevent insufficiently treated areas being subject to biodeterioration. Esterification of wood by citric acid and sorbitol can show differences in density caused by uneven chemical distribution during the curing phase and can be detected by x-ray densitometry. This study used density profiling to investigate the influ...
A Treu, S O Amiandamhem, E Larnoy


Optimization of furfurylic alcohol/tannin ratio to improve the performance of biosourced thermoset resins for wood protection
2023 - IRG/WP 23-40994
This study concerns the chemical modification of wood with different ratios of tannin and furfuryl alcohol (FA) in the presence of maleic acid as catalyst. Tannins were used not only as cross-linking agents, but also as co-monomers to improve wood durability, while reducing the amount of FA used. Different aqueous formulations were prepared containing decreasing amount of FA (from 45.45% to 0%) an...
E Azadeh, A Pizzi, P Gérardin, C Gérardin-Charbonnier


Studies on the treatability of selected pine species and corresponding efficacies of a new non-biocidal treatment
2024 - IRG/WP 24-20721
Wood decay caused by fungi may reduce the service life of wood in outdoor applications. Since moisture conditions in wood occur as one of the most crucial parameters for fungal decay, chemical modifications, which affect the latter, may increase the resistance of wood against such organisms. Usually, pine sapwood is easier to chemically treat than heartwood, as the former generally shows good perm...
T R da Silva Lins, L Emmerich, H Militz, P H Gonzales de Cademartoni, R J Klizke, M Pereira da Rocha


Previous Page | Next Page