Your search resulted in 382 documents. Displaying 25 entries per page.
Synthetic Oxalate/ß-glucan Fungal Extracellular Matrix Demonstrates Potential Inhibition of Extracellular Enzyme Diffusion into Wood Cell Walls, and Calls into Question the Role of Enzymes in Wood Decay
2025 - IRG/WP 25-11053
ß-glucan is the major component of the extracellular matrix (ECM) of many fungi, including wood degrading fungi. Many of these species also secrete oxalate into the ECM. Our research demonstrates that ß-glucan forms a novel, previously unreported, hydrogel at room temperature with oxalate. This finding better explains the gel-like nature of the fungal ECM. Oxalate, at relatively low levels, was ...
B Goodell, G A Tompsett, G Perez-Gonzalez, K Mastalerz, M Timko
Interaction of cellulolytic enzymes with fungal cell wall polysaccharides
2025 - IRG/WP 25-11071
Wood rotting fungi are the primary agents responsible for the decomposition of wood in natural environments. These fungi secrete a variety of enzymes to degrade the chemically and structurally resistant components of the wood cell wall. Some of these enzymes possess a carbohydrate-binding module (CBM), which enhances enzymatic efficiency by increasing their affinity to the substrate. Previously, w...
K Fukabori, N Hattori, Y Kojima, R Iizuka, M Yoshida
Distribution of Crystalline Cellulose-Binding Domain CBM104 in Wood Rotting Fungi
2025 - IRG/WP 25-11073
Wood rotting fungi play a crucial role in biodeterioration of wood. Many brown-rot fungi are known to rapidly degrade cellulose in wood despite lacking enzymes with cellulose-binding domains. This has led to the hypothesis that they rely on a non-enzymatic degradation system. We recently discovered a novel cellulose-binding domain, CBM104, in the brown-rot fungus Gloeophyllum trabeum. In this stud...
Y Kojima, N Sunagawa, M Aoki, S Tagawa, M Wada, K Igarashi, M Yoshida
Investigation of oxalic acid production in brown-rot fungi
2025 - IRG/WP 25-11074
Brown-rot fungi play a crucial role as wood decomposers in forests and are also known as the main cause of biodeterioration of wooden buildings in Japan. Therefore, understanding their decomposition mechanisms is important for the maintenance and preservation of wooden structures. While white-rot fungi generally use enzyme-system for degradation, many brown-rot fungi lack cellobiohydrolases which ...
S Matsumoto, R Tsukida, T Ito, M Iritani, M Yoshida
Effect of the Cellulose-Binding Domain Associated with Xylanase on the Degradation of Softwood and Hardwood Xylan
2025 - IRG/WP 25-11078
Brown rot fungi rapidly degrade hemicellulose, which is recognized as a key decomposition process during the early stages of wood decay. Brown rot fungi possess multiple genes encoding hemicellulose-degrading enzymes, suggesting that enzymatic hydrolysis plays an important role in this process. Hemicellulases produced by these fungi often contain an additional domain classified as carbohydrate-bin...
R Tsukida, Y Kojima, S Kaneko, M Yoshida
Furfurylation of wood with white pocket rot caused by Porodaedalea chrysoloma
2025 - IRG/WP 25-30819
Japanese larch (Larix kaempferi [Lamb.] Carr) is one of the major softwood plantation species in Japan. This tree is an important source of building materials or civil engineering that require strength. However, aged larch trees often suffer damage caused by wood decay fungi under natural conditions. Porodaedalea chrysoloma (Fr.) Fiasson & Niemelä is a basidiomycete and a stem heart rot fungal sp...
Y Mori, Yamashita, Y Ota, M Kiguchi
Effect of photodegradation on fungal colonization on wood during initial stage of brown-rot decay
2025 - IRG/WP 25-41024
Photodegradation and decay may happen simultaneously on wood under many exposure conditions. The aim of this study was to explore the effect of photodegradation on fungal colonization during initial stage of brown-rot decay of wood. For this purpose, southern pine (Pinus spp.) wood was exposed to accelerated UV weathering for different durations, and then decayed by a brown rot fungus (Gloeophyllu...
Y Wang, Y Peng, J Cao