IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 3056 documents. Displaying 25 entries per page.


Using X-ray scattering to elucidate the mechanisms behind the moisture and fungal decay resistance of epoxybutene modified wood
2019 - IRG/WP 19-40854
Chemical modification of the hydroxyl groups of wood can improve the properties of wood by providing moisture and biological resistance, as well as dimensional stability. Southern pine solid wood was chemically modified to various weight percentage gains (WPG) with epoxybutene (EpB, 8%-38% WPG). After modification, specimens were extracted with a toluene: ethanol (2:1) solution for 2 hours or wate...
R E Ibach, N Plaza


Development of beech wood thermo-chemical modification treatments based on different vinylic derivatives of glycerol and polyglycerol
2019 - IRG/WP 19-40855
In this study, a combination between chemical and thermal wood modification has been investigated. Seven types of a low concentration of 10% aqueous additive solution of vinylicglycerol [glycerol-maleic anhydride (Gly-MA), glycidyl methacrylate (GM), and Glycerol methacrylate-maleic anhydride (GM/MA(2eq))], vinylicpolyglycerol [polyglycerol-maleic anhydride (PG-MA), polyglycerol methacrylate (PGM...
M Mubarok, S Dumarcay, H Militz, K Candelier, M-F Thevenon, P Gerardin


Dimensional stability and decay resistance of montmorillonite- furfuryl alcohol modified wood
2019 - IRG/WP 19-40856
Poplar (Populus cathayana) wood was impregnated successively by organo-montmorillonite (OMMT; in concentration of 2%) and furfuryl alcohol (FA, in concentrations of 15%, 30% and 50%) in a two-step method to prepare OMMT-FA modified wood. The modified wood samples were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Moreover, wood physical and a...
L Zhang, J Cao


Study on the ability of wood-destroying fungi to grow through chemically modified wood
2019 - IRG/WP 19-40858
Over the last decades, chemical wood modification technologies were developed to increase the resistance against attack by wood-destroying organisms without using biocides. Most of those technologies are based on an impregnation step initially. In most treated wood products, mainly by using solid wood in thicker dimensions as in posts, poles, sleepers, deckings etc. it is known that wood impregnat...
L Emmerich, S Strohbusch, C Brischke, S Bollmus, H Militz


Mineralization of European oak with various ionic salt solutions to achieve an in situ precipitation of calcium oxalate
2019 - IRG/WP 19-40861
Thin specimens of European oak (Quercus spp.) with the dimensions of 4 × 20 × 50 mm3 were treated with various aqueous ionic salt solutions of calcium chloride, potassium oxalate and calcium acetate. Additionally, the oak was treated with combinations of calcium chloride and potassium oxalate, as well as calcium acetate and potassium oxalate with the aim to precipitate in situ the water insolubl...
T Franke, T S Volkmer


Charring of Norway spruce wood surface – an alternative surface modification technique?
2019 - IRG/WP 19-40870
Charring is an old wood surface treatment technique, mainly performed on wooden façade elements with the aesthetical aims, but also with the purpose of protection. This flame treatment method can be grouped into heat treatment processes. Below the top charred layer of damaged wood there is a layer which is during flame treatment exposed to high temperatures in anoxic or semi-anoxic conditions. Th...
M Petric, M Pavlic, J Zigon


Improvement of wood decay and termite durability resulting from combined treatments based on borax/phenol-formaldehyde impregnation followed by thermal modification
2019 - IRG/WP 19-40871
This study determined the factors influencing the boron content after leaching of pine blocks impregnated with aqueous solution of phenol-formaldehyde (PF) resin with or without borax and subjected to heat treatment by response surface methodology. An experimental design permits to analyze the effects of heat treatment temperature (150, 185 and 220°C), curing time (5, 12, 5 and 20 hours), resin c...
S Salman, M-F Thevenon, A Petrissans, S Dumarcay, P Gerardin


Towards better integration of wood protection in the forestry wood industry chain - a case study on hybrid poplar
2019 - IRG/WP 19-50359
Wood and wood products are limited in service life as in the forest ecosystem trees at end of their life are degraded to re-enter the bio-geochemical cycle. Humans can select wood species with a level of natural durability fit for an envisaged end use. Mainly those applications that require a long service life under conditions that are similar to those at soil level in a forest ecosystem have been...
J Van Acker


Water interactions in wood polyesterified with sorbitol and citric acid
2020 - IRG/WP 20-40888
Polyesterifcation of wood with sorbitol and citric acid seems to be a promising chemical wood modification technique that is both low-cost and produced from bio-based chemicals. An interesting aspect of the modification is the interaction of water with the polyesterified wood since the relationship with moisture appears to be unique compared to other wood modification systems. This communication p...
G Beck, A Treu, E Larnøy


Investigations into the use of Maleic Anhydride/Sodium Hypophosphite as a Wood Modification Process
2020 - IRG/WP 20-40891
The formation of crosslinked bonds between wood constituents is believed to be an effective way to stabilize wood against wet conditions. The possibility to use maleic anhydride (MA) combined with sodium hypophosphite (SHP) as crosslinking agents was studied, using Scots pine sapwood and a model compound. The modified wood showed weight gain and bulking effect after treatment and subsequent Soxhle...
I Kim, D Jones, O Karlsson, D Sandberg, O N Antzutkin, F Ullah Shah


Elucidation of reactive sites of wood modified with acetic anhydride: Insights from density functional theory calculations
2020 - IRG/WP 20-40892
Density functional theory (DFT) was employed to investigate the interaction of cellulose and lignin with acetic anhydride for explaining the wood modification process. Atoms in molecules (AIM) and reduced density gradient (RDG) along with non-covalent interaction (NCI) plots were used to analyse the intermolecular bonding characteristics. Cellulose was modelled with a cellobiose unit (dimer of glu...
V Ponnuchamy, A Sandak, J Sandak, R Herrera Diaz


A summary of decay performance with citric acid and sorbitol modification
2020 - IRG/WP 20-40898
Application of wood-based products as construction materials is one piece of the big puzzle to mitigate climate change. Wood is susceptible to biological deterioration. Environmentally motivated legislation is making the use of biocides less attractive from a commercial perspective. Ideally, a wood modification technology should be of low cost, water based and make use of thermal curing. This rese...
G Alfredsen, E Larnøy, G Beck, J Biørnstad, L R Gobakken, C A S Hill, A Treu


Macro biological degradation of wood treated with sorbitol and citric acid – first results from marine environment and termite exposure
2020 - IRG/WP 20-40901
Most European wood species are rapidly and severely degraded in termite-infested areas and the marine environment. There is a need for new solutions, especially in the marine environment, since we lack wood preservatives approved for marine applications in Europe. Several wood modification systems show high resistance against both marine borers and subterranean termites. However, the existing comm...
A Treu, L Nunes, E Larnøy


NewSiest-Enhancement of UV stability of thermally modified wood through envelope impregnation with nanobased stabilisers
2020 - IRG/WP 20-40909
Thermal modification is a process which improves the properties of wood, resulting in a material that can be disposed at the end of the product life cycle without presenting an environmental hazard. Thermally modified wood retains as a natural product and the grain, original colour variances and characteristics of wood are still present. However, exposure to daylight causes brightening or greying ...
K Srinivasa, M Petrič


Enhancing the durability of low durability Eucalyptus plantation species: a review of strategies
2020 - IRG/WP 20-40910
Eucalyptus species native to Australia have shown excellent growth rates, good physical properties and resistance to diseases. As a result, they are widely planted globally for a variety of uses. One negative aspect of many of these faster growing species is that they have a high percentage of low durability heartwood that resists preservative treatment. In Australia, large plantations of these sp...
K C Wood, J J Morrell, W Leggate


Plasma treatment of wood - a review of 15 years of research in Göttingen
2021 - IRG/WP 21-40913
Wood is an important renewable resource and can be found omnipresent in everyday life. Its natural properties offer numerous advantages regarding physical, mechanical but also aesthetic aspects, but also challenges that one has to address with various modification methods. Driven by the desire to promote the use of promising new technologies using plasmas, there has been a close research network ...
P Sauerbier, R Köhler, G Avramidis, W Viöl, H Militz


Influence of weathering on surface roughness of thermally modified wood
2021 - IRG/WP 21-40915
Thermally modified wood is exposed to weathering similarly as other wood-based building materials. It has been reported that if thermally modified wood is exposed to weathering, its moisture performance might decrease fairly fast. The aim of this study was to determine whether this phenomenon is associated with crack formations or roughness. Norway spruce, thermally modified spruce, wax-treated th...
E Kerzic, B Lesar, M Humar


Mechanical and biological durability properties against soft-rot and subterranean termite in the field (grave-yard test) of beech wood impregnated with different derivatives of glycerol or polyglycerol and maleic anhydride followed by thermal modification in an opened or in a closed system
2021 - IRG/WP 21-40917
This paper presents mechanical and biological durability properties in soil beg test (soft-rot test) and field test (grave-yard test) against subterranean termite of the wood modified with an aqueous vinylic derivative of glycerol/polyglycerol or maleic anhydride cured in an opened or in a closed system. Wood modification was performed through impregnation of European beech (Fagus sylvatica) with ...
M Mubarok, H Militz, S Dumarcay, I W Darmawan, Y S Hadi, P Gerardin


Effect of Heat Treatment on Physical and Mechanical Properties of Oriental Beech Wood (Fagus orientalis L.)
2021 - IRG/WP 21-40923
The present study aims to investigate the influence of heat treatment on physical and mechanical properties of Oriental beech wood (Fagus orientalis Lipsky.). Samples were exposed to temperature levels of 130˚C, 160˚C, and 190˚C for 3, 6, and 9 h. Selected physical and mechanical properties including compression strength parallel to grain, compression strength perpendicular to grain, bending st...
M D Ghalehno, D Chu, B N Sheshkal, M Humar, M Bahmani


Assessing the Performance of Wood-based Materials Exposed to Termite Risk – A New Experimental Approach
2022 - IRG/WP 22-10989
Termites are able to degrade a large number of building materials including wood, wood-based panels, biobased insulation, and polymers. The risk for a material of being degraded by termites depends on its composition, on its accessibility, and also on the behavior and the biology of the termite species considered. Within the EU project Click Design, we investigated the durability, under laboratory...
M Kutnik, I Paulmier, C Brunet, D Ansard, M Montibus


Wood modification reduces the feeding rate of the wood boring crustacean, Limnoria quadripunctata
2022 - IRG/WP 22-10993
Adult Adult Limnoria search for new wood once their current piece disintegrates from tunnelling. During this time, they do not have access to wood so experience a period of starvation and must feed again once settled. Wood modification offers protection to marine structures by reducing the feeding rate of Limnoria and therefore can reduce recruitment of adults from distant pieces of wood. Chemical...
L S Martin, S Lande, M Westin, S M Cragg


Results of the resistance of acetylated wood against marine borers at three Italian sites after five years of sea immersion
2022 - IRG/WP 22-10994
The aim of this research was the determination of resistance of acetylated wood against marine decay in use class 5 (EN 335) in temperate sea waters. The resistance of acetylated Pinus radiata (radiate pine) in solid and medium density fibreboard (MDF) panels is compared with that of the untreated Scots pine, radiata pine and other untreated wood of European species such as Fagus sylvatica (Europe...
S Palanti, F Stefani, M Andrenacci, M Faimali, I Guarneri, M Sigovini, D Tagliapietra


Green approach in wood mineralization for improvement of fire properties
2022 - IRG/WP 22-30769
Various treatments have been developed in order to improve fire properties of wood. Because the use of some flame retardants can release toxic compounds in the event of a fire, leading to poisoning or even death of people from smoke inhalation, the use of no-toxic and more ecologically acceptable flame retardants is preferable. Mineralization of wood with the incorporation of carbonates has proven...
A Pondelak, R Repič, L Škrlep, N Knez, F Knez, A S Škapin


A novel wood preservation technology improving durability and water-related properties
2022 - IRG/WP 22-40926
A newly developed silicone oil (Archroma Management GmbH, Switzerland) was tested for wood modification purposes. Scots pine sapwood was treated with aqueous solutions of this silicone oil and showed a penetration of the modification agent into the wood cell wall. Both, biological durability and moisture-related properties, experienced significant improvements by the modification. Besides, the mod...
L Emmerich, H Militz, M Vila


Durability against fungal decay of sorbitol and citric acid (SorCA) modified wood
2022 - IRG/WP 22-40928
Most European-grown wood species are susceptible to biological degradation, specifically, they suffer from a poor resistance against wood-destroying fungi. Therefore, prior to outdoor exposure, wood has to be treated either by applying a protective coating on its surface or by full-volume impregnation with antifungal chemicals. However, due to environmental and health concerns, the most frequently...
K Kurkowiak, L Emmerich, H Militz


Previous Page | Next Page