IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 171 documents. Displaying 25 entries per page.


Determining the natural durability on xylarium samples: mini-block test, wood powder and chemical profiling
2019 - IRG/WP 19-10944
Xylaria, or wood collections, can be considered sleeping beauties in terms of wood technological and biological output. In this study we focus on determining the natural durability of xylarium specimens from the Federal Xylarium in the Royal Museum for Central Africa. The Federal Xylarium contains over 80,000 specimens, covering more than 13,000 species, mainly from Central Africa. These specimens...
V Deklerck, L De Ligne, J Van den Bulcke, E Espinoza, H Beeckman, J Van Acker


Exploring the use of X-ray micro CT as a tool for the monitoring of moisture production and mass loss during lab-based fungal degradation testing
2019 - IRG/WP 19-20654
Bio-based building materials, such as wood and wood-engineered products, are susceptible to degradation by decay fungi. In-depth knowledge on the intricate material-fungus relationship as well as performance data for many bio-based building materials are still lacking, and especially knowledge on how a material’s structure and moisture properties affect the degradation process is missing. Althou...
L De Ligne, J Van den Bulcke, A De Muynck, J M Baetens, B De Baets, L Van Hoorebeke, J Van Acker


Towards better integration of wood protection in the forestry wood industry chain - a case study on hybrid poplar
2019 - IRG/WP 19-50359
Wood and wood products are limited in service life as in the forest ecosystem trees at end of their life are degraded to re-enter the bio-geochemical cycle. Humans can select wood species with a level of natural durability fit for an envisaged end use. Mainly those applications that require a long service life under conditions that are similar to those at soil level in a forest ecosystem have been...
J Van Acker


Pigment production by the spalting fungus Scytalidium ganodermophthorum and its industry potential
2020 - IRG/WP 20-10957
Scytalidium ganodermophthorum is best known as a pathogen of cultivated mushrooms, with infected cultures turning yellow in color. The fungus is also used in the art form known as ‘spalting’ to produce yellow, green, and purple colors in wood for decorative purposes. Wood colored by fungus in this manner has been traditionally used in the creation of fine art and woodworking since the 16th cen...
R C Van Court, P Vega Gutierrez, S C Robinson


Performance of bio-based building materials – durability and moisture dynamics
2020 - IRG/WP 20-20666
When exposed to conditions favourable for decay, bio-based building materials can be susceptible to degradation. Their ability to withstand deterioration over time (performance) depends on the intrinsic or enhanced durability of the material as well as its wetting and drying behaviour. The effect of fungicidal components in wood is known since long. Other material characteristics, such as the mate...
L De Ligne, J Caes, S Omar, J Van den Bulcke, J M Baetens, B De Baets, J Van Acker


Modelling decay rates of timber exposed above ground on four different continents
2020 - IRG/WP 20-20670
Durability performance data from an international decking trial were analysed to explore relationships with climate variables, particularly those related to temperature and rainfall. Matched decking samples of slash pine (Pinus elliottii) sapwood and heartwood, spotted gum (Corymbia citriodora), Norway spruce (Picea abies) and Scots pine sapwood (Pinus sylvestris) were exposed to the weather above...
L P Francis, J J Morrell, C Brischke, P B Van Niekerk, J Norton


Impact of fungal decay on the bending properties of wood
2020 - IRG/WP 20-20671
Wood used outdoors is generally prone to fungal degradation, and its impact on the structural integrity of wood is an immanent factor for service life planning with timber. Wood decayed to very small mass losses can suffer from a significant reduction in mechanical strength and elastic properties. Hence, the latter are preferred indicators to detect decay in wood durability studies. Numerous previ...
S Bollmus, P B van Niekerk, C Brischke


Biofinish: A Functional Wood Surface Treatment based on Aureobasidium
2020 - IRG/WP 20-40903
Xyhlo Biofinish is a natural and environmentally friendly wood protection concept based on linseed oil impregnation and a fungal-based coating. It emerged in the late 1990s and has been developed over the past 15 years into an industrially applicable process in the Netherlands. The combination of linseed oil impregnation and a surface treatment with the living fungus Aureobasidium extends the serv...
S Rensink, M Sailer, S Roukens, J Gerber, H van der Mel, K Potgieter, J Spit, R Bulthuis, C Struck, M Bennink


Combining MRI and X-ray CT to monitor fungal decay of plywood and OSB in a lab test
2022 - IRG/WP 22-20683
Bio-based building materials, such as wood and wood-engineered products, are susceptible to degradation by decay fungi. In-depth knowledge on the intricate material-fungus relationship as well as performance data for many bio-based building materials are still lacking, and especially knowledge on how a material’s structure and moisture properties affect the degradation process is missing. Althou...
L De Ligne, T Núñez Guitar, C Vanhove, J Van Acker, J Van den Bulcke


Using satellite-retrieved soil moisture data to model the decay risk of in-ground timber
2022 - IRG/WP 22-20689
Satellite-derived soil moisture data from the Soil Moisture Active Passive (SMAP) was extracted for a 9 x 9 km point grid over Europe. The data was then used as input to a dose-response wood decay model based on terrestrial microcosm (TMC) tests. The resulting hazard map plotted dose as an indicator of in-ground wood decay based on differences in annual temperature and soil moisture characteristic...
P B van Niekerk, M Schönauer, B N Marais, C Brischke


Moisture sorption behaviour of poplar and thermally modified poplar using dynamic vapour sorption (DVS)
2022 - IRG/WP 22-40947
The moisture sorption behaviour of wood has a critical impact on service life. In Europe, softwood is mostly used to manufacture engineered wood products such as cross-laminated timber (CLT) or glue-laminated timber (GLT or glulam). Yet fast-growing and widespread tree species such as hybrid poplar with or without modification, have potential to meet the increasing demand. This study shows the moi...
X Jiang, J Van den Bulcke, L De Boever, M Minsart, A Mignon, J Van Acker


Simulations of microclimates for wood-decaying fungi in the built environment using environmental analysis
2023 - IRG/WP 23-20703
Simulations of fungal decay risk were run on two similar building geometries exposed to typical annual climate conditions of two different geographical locations, Brunswick (Germany) and Cairns (Australia). The simulations were conducted to capture the effect of wind-driven rain and solar irradiation exposure over nodes of the common building geometry. The moisture content and temperature variatio...
P B van Niekerk, J Niklewski, S H Hosseini, B N Marais, I Frimannslund, T Kringlebotn Thiis, C Brischke


Modification of wood by fast pyrolysis bio-oil – the NewWave project concept for bio-based wood treatment
2023 - IRG/WP 23-40990
The NewWave project aims to contribute to building a circular economy by introducing sustainable raw materials in different manufacturing lines, replacing toxic chemicals and lowering the environmental footprint of the products. The raw materials are obtained from the thermochemical fractionation of biomass. This process converts biomass residues by fast pyrolysis into Fast Pyrolysis Bio-Oil (FPBO...
A Sandak, J Sandak, F Poohphajai, R Herrera Diaz, A Gubenšek, K Butina Ogorelec, L Kiezebrink, K J Swager, H Heeres, B van de Beld


Enhanced durability of bio-based materials for green building
2023 - IRG/WP 23-50382
Wood protection technologies provide tools to enhance the durability of bio-based materials for green building. Both wood and related bio-based material are regarded as eminent for green building. It allows to underpin several of the United Nations sustainable development goals and is regarded critical for the Green Deal objectives of the EU. Nevertheless, to enhance the potential it needs to be b...
J Van Acker, L De Ligne, J Vand den Bulcke


Utilising novel service life prediction methods for robust and precise Life-Cycle-Costing (LCC)
2023 - IRG/WP 23-50384
Life-Cycle-Costing (LCC) is one of the basic indicators for the assessment of sustainability and cost effectiveness in construction applications. Project WoodLCC was thus conceived to enable LCC through input from models for detailed service life planning of wooden components and buildings. The project is a continuation of the service life planning research conducted in Europe over the last three ...
P B van Niekerk, G Alfredsen, T Kalamees, R Modaresi, A Sandak, J Niklewski, C Brischke


Investigating moisture dynamics and fungal decay risk: integrating X-ray CT visualization and simulation benchmarks through a Fungal Control Unit
2024 - IRG/WP 24-11045
Wood is susceptible to fungal attack and over time the structural integrity can be compromised. This risk is of course strongly related to moisture dynamics, as moisture is needed for fungal growth. While existing methodologies, such as lab and field tests, provide valuable insights into wood decay, they often fall short in replicating real-life conditions, particularly within the intricacies of t...
J Van den Bulcke, J Van Acker, M Delbeke, A Blommaert, N Van Den Bossche, M Steeman, L De Ligne


How personality traits influence the perception of fungal decay in a wooden cladding – A survey in three Modelling wood moisture content in outdoor conditions from measured data
2024 - IRG/WP 24-41002
This study examined perceptions of fungal decay damage on wooden cladding across Norway, Sweden, and Germany. The majority of respondents across all countries did not find the fungal decay damage in question acceptable, with the least acceptance in Norway. This could be due to Norway having the highest frequency of wooden residential buildings and the most experience with maintaining wooden claddi...
G W Gustavsen, G Alfredsen, P B van Niekerk, J Niklewski, C Brischke


Modelling the service life of wood in ground contact – Verification of remotely sensed soil data from the reanalysis dataset ERA5-Land using in-situ measurements at a test site of utility poles in Eastern Norway
2024 - IRG/WP 24-41003
This study compared soil moisture and temperature estimates from the 5th European reanalysis (ERA5-Land) dataset with in-situ measurements to assess the accuracy and applicability of ERA5-Land data for modelling the service life of wood in ground contact. The ERA5-Land soil temperature estimates showed a moderate correlation with the in-situ temperature measurements (Spearman’s ρ of 0.73) and a...
U Hundhausen, P B van Niekerk, B Marais


Modelling wood moisture content in outdoor conditions from measured data
2024 - IRG/WP 24-41005
Sustainable use of wood requires an understanding of expected service life, particularly when the material is exposed to outdoor conditions and, thus, fungal decay. Since moisture is the primary vector for fungal decay, accurate moisture prediction is a key component in service life assessment. For this purpose, the present study leverages existing measured data for linear regression of in-field m...
J Niklewski, P B van Niekerk, L Meyer-Veltrup, J Sandak, C Brischke


Service life of poplar, a low durability hardwood
2024 - IRG/WP 24-41007
Hybrid poplar is the most common plantation hardwood of the temperate climate zone and is complementary to natural stands of aspen with mainly plantations in Europe and China. Poplar wood has been considered as a valid alternative for many of the construction applications of softwoods especially when considering engineered wood products. The natural durability of hybrid poplar is low and for a ra...
J Van Acker, X Jiang, L De Ligne, J van den Bulcke


Changes in decay risk of wood in ground contact over Europe, from analysis of historic climate conditions
2024 - IRG/WP 24-41008
Changing climate conditions will affect global temperature and precipitation patterns, shifting some geographical areas into states that are more suitable for fungal wood decay. Climate normals, which are taken over a 30-year period, capture vast spatial and temporal variations in these conditions and comparing these can show changes over time. Importantly, being able to identify locations that ha...
P B van Niekerk, B N Marais, G Alfredsen, C Brischke


Previous Page