IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 341 documents. Displaying 25 entries per page.


Environmentally Friendly Wood Modification based on Tannin-Furfuryl alcohol - Effect on stabilisation, mechanical properties and decay durability
2022 - IRG/WP 22-40929
Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-f...
M Mubarok, E Azadeh, F O Akong, S Dumarçay, A Pizzi, C Charbonnier-Gérardin, P Gérardin


Molecular dynamics investigation of wood modification with furfuryl alcohol
2022 - IRG/WP 22-40931
Molecular dynamics (MD) was applied to investigate and understand the structural characteristics and the interaction of cellulose and lignin with furfuryl alcohol for explaining the wood modification process. A single chain of cellulose polymer model and a softwood lignin model was considered to represent cellulose and lignin polymers. The obtained radial distribution function results revealed tha...
V Ponnuchamy, J Sandak, A Sandak


Surface chemical wood densification through in situ electron beam polymerization: description and dose study
2022 - IRG/WP 22-40933
Traditional wood chemical densification processes can be used to improve wood mechanical properties by increasing density of the material throughout its thickness. While mechanical surface densification has heavily been investigated, surface treatments involving impregnation of monomers remain unexplored. This study describes a new material, surface densified through lateral impregnation of acryla...
J Triquet, P Blanchet, V Landry


Chemical modification of cellulose nanofibrils for tailoring properties of composites
2022 - IRG/WP 22-40934
Due to its natural abundance, complete biodegradability and excellent properties, cellulose is one of the most promising materials for the production of bio composites, as well as one of the most promising fillers for biodegradable polymer composites. This is also true for nanocellulose. A large number of hydroxyl groups on the surface of fibers or fibrils enables a whole series of chemical reacti...
I Poljanšek, J Levanič, V Ž Bogataj, V Vek, P Oven


Comparative study of the properties of silicate coatings with different mineral pigments (titanium dioxide, iron (III) oxide, copper (II) oxide) on the surface of wood
2022 - IRG/WP 22-40936
Silicate coatings are attractive alternatives to conventional organic-based coatings for wood protection. In this work, silicate coatings were prepared with a potassium silicate binder modified with a methyl siliconate solution, and three types of mineral pigments titanium dioxide, iron (III) oxide and copper (II) oxide. The coatings were applied on beech wood and cured under ambient conditions. T...
A M Cheumani Yona, M Petrič


Effect of nano-particle characteristics and concentration on UV protection of timber: A field exposure test
2022 - IRG/WP 22-40941
Wood has a well-known susceptibility to ultra-violet light degradation, leading to premature replacement. A variety of products have been developed to protect against this damage, but most provide less than 12 months of protection and must be regularly reapplied. Developing improved coatings would help reduce wood losses and reduce maintenance costs. Nano-particles have a variety of attractive pro...
T Yi, J J Morrell


Mechanical Properties of Thermally Modified Wood after twelve Months of Field Exposure
2022 - IRG/WP 22-40945
This study aimed to evaluate the durability and mechanical properties of two different woood species, namely beech (Fagus sp.) and silver fir (Abies alba), from Bosnia and Herzegovina thermally modified at three different temperatures and duration at maximum temperature. Samples of the mentioned wood species wood (Abies alba) were prepared according to EN 408+A1 standard. The maximum 4-point bendi...
R Hasanagić, M Bahmani, L Fathi, M Humar


Effect of densification of Eucalyptus nitens and E. obliqua on moisture uptake, swelling, decay resistance, and fire performance
2022 - IRG/WP 22-40946
Some Australian Eucalyptus species that are abundantly available have low natural durability and poor resistance to fire. These same species are also extremely difficult to treat with preservatives or fire retardants using conventional pressure treatment methods due to a large proportion of refractory heartwood. The aim of this research was to understand whether thermo-mechanical densification had...
B Hassan, J J Morrell, F Wiesner, W Wu, B Belleville, K C Wood


Moisture sorption behaviour of poplar and thermally modified poplar using dynamic vapour sorption (DVS)
2022 - IRG/WP 22-40947
The moisture sorption behaviour of wood has a critical impact on service life. In Europe, softwood is mostly used to manufacture engineered wood products such as cross-laminated timber (CLT) or glue-laminated timber (GLT or glulam). Yet fast-growing and widespread tree species such as hybrid poplar with or without modification, have potential to meet the increasing demand. This study shows the moi...
X Jiang, J Van den Bulcke, L De Boever, M Minsart, A Mignon, J Van Acker


Improving wood durability by mineralisation and thermal modification
2022 - IRG/WP 22-40948
A significant increase in the fungal durability of wood was achieved by using a modification procedure combining two environmentally friendly methods: thermal modification and mineralisation. It offers an ecological alternative to other biocidal treatments. European beech (Fagus sylvatica) and Norway spruce (Picea abies) were selected as model wood species and exposed to four different fungi: Gloe...
R Repič, A Pondelak, D Kržišnik, M Humar, A S Škapin


Durability of thermotreated Pinus sylvestris and Eucalyptus nitens against wood decay organisms
2022 - IRG/WP 22-40949
One of the alternative treatments to avoid the application of biocides is thermal modification of wood, which increases the durability of wood against attack by wood decay organisms. The durability of Pinus sylvestris and Eucalyptus nitens thermotreated at 180 and 212 ºC, was studied. The results show that thermotreatment against wood decay fungi in P. sylvestris is slightly more effective than i...
M T Troya, S M Santos, L Robertson, N Pérez-Molina, V Baños, A Dieste


Phenol formaldehyde modification and termite resistance under laboratory testing
2022 - IRG/WP 22-40952
The development of phenol formaldehyde (PF) resins as a means of impregnating solid wood is one that has been explored for several decades, both in terms of conventional impregnation processing (Impreg) or compressional impregnation (Compreg). However, it is only recently with advances in processing conditions that the method truly affords a means of achieving conventional modification for solid t...
L Nunes, A Pitman, M Duarte, B Stefanowski, D Jones


Durability of thermally modified western hemlock lumber against wood decay fungi
2022 - IRG/WP 22-40954
The chemical modification of wood is gaining popularity as a treatment to increase wood durability in the United States. Further standardization and testing of thermally modified North American species is needed to optimize the production of thermally modified products from regionally available resources. This work measures the impact of thermal modification of western hemlock lumber durability ag...
G Presley, J Cappellazzi, I Eastin


Evaluation of Decay Resistance for the Larch Wood Heat-treated with Superheated Steam
2022 - IRG/WP 22-40956
Heat-treatment of wood is a process that involves applying heat ranging 160–260°C to improve its physico-mechanical properties and resistance against wood rot fungi. The level of the changes in the wood properties by heat-treatment differs depending on the temperature and duration of heat-treatment, as well as the types of heat transfer media used for heat-treatment. The heat-treatment on wood ...
Y Park, S-M Yoon, H Kim, W-J Hwang


Novel bio-based tannin/furfurylic alcohol thermosets: application to wood preservation
2022 - IRG/WP 22-40959
This project is integrated within the overall context of sustainable development and targets the valorization the wood industry by-products such as polyphenolic extractives, and in particular tannins. The objective targets the use of the same polymer used for production of tannin-furanic foams, but here for wood preservation to avoid the utilization of biocides. The aims is to the design of copoly...
C Gérardin-Charbonnier, E Azadeh, A Pizzi, P Gerardin


Accelerated surface mould testing for exterior wood treatment in Temperate, Tropical and Laboratory environments
2023 - IRG/WP 23-20699
Mould attack is a very common cause of discoloration on wooden surfaces and can subsequently promote development of wood decay by other organisms. Prevention of mould growth is relevant for both pigmented wood paints as well as more transparent systems with a high or low amount of binder. The use of commercial biocides has led to effective microbiological inhibition in many contexts, but the incre...
A Nazeri, J Stenbaek, T R Laursen, A H H Wong, B M Hasnul


Moisture performance of wooden shingles tested on the Golobar cable yarding
2023 - IRG/WP 23-20704
Wood is a traditional roofing material in Europe and other parts of the world. In the 17th century, wooden roofing was generally used on more important buildings, but today it is mainly used on huts and houses in the Alpine regions. As wooden roofing is expensive, we investigated the possibility of extending the service life of the roofing through material selection and details. The roof of the Go...
M Humar, B Lesar, D Kržišnik


Improvement of durability of Scots pine against termites by impregnation with citric acid and glycerol followed by in situ polyesterification
2023 - IRG/WP 23-30777
Scots pine (Pinus sylvestris) sapwood samples were impregnated with solution containing citric acid (CA) and glycerol (Gly) followed by heating 140 °C according to already described procedure (L'hostis et al. 2018). The resulting modified woods were then used to evaluate the effect of chemical modification on the durability against termites. Two kinds of experiments were conducted for this purpos...
M Mubarok, J Damay, E Masson, E Fredon, Y S Hadi, I W Darmawan, P Gerardin


Biological durability and wood-water interactions of sorbitol and citric acid modified wood – Effects on the expected service life
2023 - IRG/WP 23-40960
A high level of research activities on sorbitol and citric acid (SorCA) modified wood has been recognized in Europe over the last few years. As this treatment is close to entering an industrial-scale production, it is of interest to investigate how such treated wood performs upon long-term outdoor exposure. Hence, in this study Scots pine (Pinus sylvestris L.) sapwood was modified with aqueous sol...
K Kurkowiak, L Emmerich, H Militz


The influence of chemical and thermal modification on homogeneity between sapwood, heartwood, and transition wood of short rotation teak
2023 - IRG/WP 23-40961
Short rotation teak wood has low quality especially in durability. Heartwood presents sufficient natural durability and poor impregnability; meanwhile, most sapwood requires special treatment to increase its durability. The objective of this work was to investigate the effect of thermal or chemical treatment on homogenization between sapwood, heartwood, and transition wood for some selected proper...
R Martha, B George, W Darmawan, P Gerardin


Field test methods as long-term aging – report of selective wood properties
2023 - IRG/WP 23-40962
Wood samples from a long-term field test are a valuable compendium of information about the material in the context of its aging processes. In the current work, wood samples from the round-robin test within the ECOMOD project were used as a material for the natural aging process (III and IV class of utility). The research scope was to determine selected properties of this wood which can be partial...
W Perdoch, M Benc, B Mazela, A Szulc, J Cegiela


Resistance of phenol formaldehyde impregnated beech (Fagus sylvativa L.) LVL against biodegradation in soil contact
2023 - IRG/WP 23-40965
Alternatives to preservative impregnation are emphasized in Germany and other European countries. Even though these treatments significantly improve wood's resistance to decay, they often do not have a beneficial impact on the dimensional stability. One alternative product, which may be used in ground contact for items like poles and railway sleepers, could be beech (Fagus sylvatica L.) laminated ...
M Slabohm, C Brischke, S Bicke, H Militz


Effect of impregnation modification treatment on properties of Paraserianthes falcataria wood
2023 - IRG/WP 23-40966
Modification treatment can improve the properties of wood, particularly those of fast-growing species. Paraserianthes falcataria, also known as batai, is a fast-growing species with low wood density. This species has piqued the interest of those involved in industrial wood processing as a promising alternative for construction. The aim of this study is to improve the dimensional stability of batai...
A S Yusoh, A S Boneka, M K Anwar U, S Salim, S H Lee


New wood-modification process based on grafted urethane groups: Durability of carbamamylated Scots pine (Pinus sylvestris L.) wood
2023 - IRG/WP 23-40974
Substituting commonly used toxic preservatives with wood modification treatments can make the wood material less prone to water and moisture uptake. This approach favours a more sustainable protection of wood against biodegradation. In this study, Scots pine sapwood was full-cell impregnated with an aqueous solution of urea (30%), dried at 40°C for 24h, and subsequently heat-treated at 150°C for...
C-F Lin, O Myronycheva, O Karlsson, D Jones, D Sandberg


The impact of pre-drying on treatment level variations of esterified solid wood analysed by X-ray densitometry
2023 - IRG/WP 23-40977
Wood modification requires homogenous treatment levels within the wood matrix to prevent insufficiently treated areas being subject to biodeterioration. Esterification of wood by citric acid and sorbitol can show differences in density caused by uneven chemical distribution during the curing phase and can be detected by x-ray densitometry. This study used density profiling to investigate the influ...
A Treu, S O Amiandamhem, E Larnoy


Previous Page | Next Page