IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 552 documents. Displaying 25 entries per page.


Assessing the Performance of Wood-based Materials Exposed to Termite Risk – A New Experimental Approach
2022 - IRG/WP 22-10989
Termites are able to degrade a large number of building materials including wood, wood-based panels, biobased insulation, and polymers. The risk for a material of being degraded by termites depends on its composition, on its accessibility, and also on the behavior and the biology of the termite species considered. Within the EU project Click Design, we investigated the durability, under laboratory...
M Kutnik, I Paulmier, C Brunet, D Ansard, M Montibus


Service trial of different materials exposed in jetties at Öresund. Progress report No. 5
2022 - IRG/WP 22-30764
This report contains results of the fifth inspection on the performance of different decking materials – preservative-treated wood, modified wood, natural durable wood, re-cycled plastics and wood-plastic composites (WPCs) - available on the market and exposed since 2013 (some since 2014 and 2016) by the City of Malmö in two jetties near the Øresund Bridge, south of central Malmö in Sweden. T...
J Jermer


Post-layup protection of mass timber elements in above ground protected exposures: 2-year results
2022 - IRG/WP 22-30766
Mass timber has seen increased use as a building material for low and mid-rise construction in recent decades. The durability of mass timber elements has not been fully examined and the effects of wood destroying organisms on this these materials merits attention. The effectiveness of currently labeled soil termiticides and passively applied biocides at post-construction or as remedial agents need...
M E Mankowski, T G Shelton, G T Kirker, J J Morrell


Above-Ground Termite Resistance of Naturally Durable Species in Ontario and Mississippi
2022 - IRG/WP 22-30767
A collaborative above-ground protected termite field test was initiated by FPInnovations and the USDA Forest Service at sites in Ontario and Mississippi. The aims of the experiment were to compare the rate of attack in protected, above-ground exposures by the subterranean termite species, Reticulitermes flavipes, between northern (Ontario) and southern (Mississippi) test sites and to generate perf...
R Stirling, M Mankowski


Biological assessment of bio-based phase change materials in wood for construction applications
2022 - IRG/WP 22-40935
Solid wood can serve multi-functionality for energy savings in buildings. The study reveals the results of bio-deterioration and degradation of solid Scots pine wood used to incorporate single or multicomponent fatty acid mixtures as bio-based phase change materials (BPCMs). The sapwood samples were impregnated with capric acid (CA), methyl palmitate (MP), lauryl alcohol (LA) and a mixture of coco...
S Palanti, A Temiz, G Köse Demirel, G Hekimoğlu, A Sari, M Nazari, J Gao, M Jebrane, T Schnabel, N Terziev


Phenol formaldehyde modification and termite resistance under laboratory testing
2022 - IRG/WP 22-40952
The development of phenol formaldehyde (PF) resins as a means of impregnating solid wood is one that has been explored for several decades, both in terms of conventional impregnation processing (Impreg) or compressional impregnation (Compreg). However, it is only recently with advances in processing conditions that the method truly affords a means of achieving conventional modification for solid t...
L Nunes, A Pitman, M Duarte, B Stefanowski, D Jones


A Comparison of Cross-Laminated Timber (CLT) Floor Panels using Finite Element Analysis and Experimental Fire Testing
2022 - IRG/WP 22-40955
Cross-laminated timber (CLT) is a relatively new timber product and has gained popularity in North America and Europe as a construction material. As a sustainable engineered timber product, CLT offers many advantages over solid wood, concrete, or steel construction. However, the use of timber in medium to high rise buildings is often avoided mainly due to its combustible nature. In this paper, a n...
M Yasir, A Macilwraith, K Ruane


Evaluation of different wood by-products for sustainable building biomaterial production using fungal mycelium
2022 - IRG/WP 22-50373
As human population increases, the demand for new innovative, sustainable, and low impact construction materials also grows. Mycelium-based composites have shown to be an excellent alternative for traditional products ranging from low-density objects to semi-structural applications. They also present the advantage of using the waste streams from other productive processes as feedstock, enabling th...
C Charpentier-Alfaro, M Poggerini, S Palanti, G Della Rocca, D Pellegrini, A Crisci


Biological durability for novel composites manufactured from green materials
2022 - IRG/WP 22-40960
Flax and Jute fabrics were used as reinforcements with polyester resin to form composite skins while poplar particleboard was used as a core for making composite sandwich structures by applying vacuum assisted resin transfer molding (VARTM) technique. Mechanical, physical, and biological properties of these novel green composite sandwich structures were evaluated. The results showed that the propo...
A S O Mohareb, A H Hassanin, A A Badr, K T S Hassan, R Farag


Glued laminated poles - Progress report after 43 years of testing
2023 - IRG/WP 23-20692
In 1979, a number of glued laminated poles treated with CCA and creosote were placed in a greenhouse in Uppsala, in the Simlångsdalen test field in south-western Sweden and in a power lane in Vuollerim in northern Sweden, in order to study their resistance against biological degradation. The test poles were treated in a two-step process. All laminations of Scots pine (Pinus sylvestris) were first...
J Jermer, M Westin, N Terziev


Field durability testing of wood above ground - Part 1: 15 years’ experience with the Bundle method
2023 - IRG/WP 23-20695
A ‘jack of all trades’ method for above-ground wood durability testing has been sought for decades, but until now no method has found its way into standardization. The method of choice shall be applicable for untreated and treated wood – ideally also for wood composites. It shall be reproducible, objective, fast, easy, and inexpensive. Finally, it shall provide high predictive power. This s...
C Brischke, G Alfredsen, L Emmerich, M Humar, L Meyer-Veltrup


Field durability testing of wood above ground - Part 2: The full guideline of the Bundle method
2023 - IRG/WP 23-20696
To determine the biological durability of wood above ground, numerous approaches for test methods have been pursued and tried out in the field in the past. So far, no method has managed to find its way into a European standard. During the last 15 years, experience with the Bundle method has been gained. As described in Part 1 of this paper, the method is recommended as a suitable tool for determin...
C Brischke, G Alfredsen, L Emmerich, M Humar, L Meyer-Veltrup


Laboratory durability testing of preservative treated wood products – first attempts and observations
2023 - IRG/WP 23-20697
In the past, durability classes (DC) had been assigned to wood species, sometimes also to homogenously modified wood-based materials such as thermally modified wood. More recently, some standards allow for classifying the biological durability of chemically modified wood, preservative treated wood and wood composites. Even treated products may be subject to durability classification, but necessary...
C Brischke, M Sievert, M Schilling, S Bollmus


Accelerated surface mould testing for exterior wood treatment in Temperate, Tropical and Laboratory environments
2023 - IRG/WP 23-20699
Mould attack is a very common cause of discoloration on wooden surfaces and can subsequently promote development of wood decay by other organisms. Prevention of mould growth is relevant for both pigmented wood paints as well as more transparent systems with a high or low amount of binder. The use of commercial biocides has led to effective microbiological inhibition in many contexts, but the incre...
A Nazeri, J Stenbaek, T R Laursen, A H H Wong, B M Hasnul


Performance of a noise barrier with different wood materials – results from a service trial after 25 years of exposure
2023 - IRG/WP 23-30776
In connection with the construction of the railway connection between Stockholm Arlanda airport and Stockholm city, an 11 km long noise barrier made of untreated European larch was built along the railway line. This provided an opportunity to implement a full-scale study comparing different untreated wood species and preservative treatments. Thus, in March 1996 ten test sections including untreate...
J Jermer, M Westin


Challenges in managing very long-term field tests
2023 - IRG/WP 23-30779
Field testing of wood preservatives has been on-going in Petawawa, Ontario, Canada since at least 1937. Many of the treated roundwood posts from these early experiments are still in test, and include preservatives still used today, including creosote, copper naphthenate, pentachlorophenol and CCA. Performance data from selected experiments more than 50 years old are reported and we discuss some of...
R Stirling, D Wong


Long-term field performance of a carbon-based preservative in ground contact test conditions
2023 - IRG/WP 23-30781
Carbon-based preservatives have demonstrated reasonable long-term field performance in above ground testing. This study examines the performance of a carbon-based preservative formulation containing quaternary ammonium compounds and tebuconazole as a treatment for three softwood species exposed in ground contact at two sites in Canada. The treatment was associated with improved decay resistance an...
C Wilson, J Zhang, R Stirling


Field performance of MCA-treated wood in ground contact
2023 - IRG/WP 23-30782
Micronized Copper Azole (MCA) was evaluated for its ability to resist biodegradation at two Canadian test sites using Pacific silver fir and white spruce stakes, and lodgepole pine and red pine roundwood posts. After 12 years of exposure the treated stakes exhibited low to moderate levels of decay while the untreated controls had failed. When stakes were moved to an active termite site, the untrea...
C Wilson, J Zhang, R Stirling


Tree bark as a renewable source of wood protection materials for building applications (BarkBuild)
2023 - IRG/WP 23-30792
The BarkBuild project aims to address climate change mitigation by developing new, sustainable, and long-lasting wood building materials with low environmental impact. The project focuses on developing bark-based wood protection and building formulations that demonstrate technical performance, safety, and sustainability in both outdoor and indoor applications. The research objectives of the projec...
A Treu, M Sipponen


Emerging wood nanotechnologies towards sustainable application and preservation
2023 - IRG/WP 23-40959
Wood is one of the most abundant biomaterials on earth and has been used for construction historically. Although existing wood composites are commercially successful, materials development has not targeted nano-structural control of the wood cell wall, which could extend the property range. The high porosity and permeability of wood scaffold provide excellent opportunities for material infiltratio...
Q Fu, T Singh, D Elustondo, M Sorieul


Manipulation of the hierarchical wood structure for extended carbon storage in the built environment
2023 - IRG/WP 23-50381
The sustainable processing of trees into construction materials can act as carbon storage. Carbon storage in durable sustainable wooden construction material has cumulative effects and net gain in storage in the built environment that can be offset by net losses in forest carbon by cutting the tree. Carbon storage for an extended period plays an important role in the mitigation of CO2 emissions an...
T Singh, A Arpanaei, D Elustondo, Q Fu


Enhanced durability of bio-based materials for green building
2023 - IRG/WP 23-50382
Wood protection technologies provide tools to enhance the durability of bio-based materials for green building. Both wood and related bio-based material are regarded as eminent for green building. It allows to underpin several of the United Nations sustainable development goals and is regarded critical for the Green Deal objectives of the EU. Nevertheless, to enhance the potential it needs to be b...
J Van Acker, L De Ligne, J Vand den Bulcke


Prevention of termite tubing on foam insulation materials
2024 - IRG/WP 24-11039
Foam insulation products have been shown to be damaged by termites who can readily tunnel within it and use it as a conduit within structures. Different types of commercially available foam insulation were tested to see if they could support termite (Coptotermes formosanus, Shiraki) tunnelling on or within them and whether they could be used as a conduit to access a wood food source placed above i...
Q Wu, J Curole, J D Lloyd


Binder-free, fire-resistant, light-weight fiberboard materials encrusted with expandable graphite and borax
2024 - IRG/WP 24-20714
Despite abundant data on innovative fire protection technologies tailored for wood and lignocellulosic materials, the prevailing approach revolves around the formulation of fire retardant solutions employing water-soluble salts, e.g., phosphorus or boron compounds. On the other hand, additives fostering the formation of a char layer during the combustion of lignocellulosic materials as a non-leach...
W Perdoch, W Grześkowiak, B Mazela


Effectivity of zinc borate in medium density fiberboard (MDF) for ground proximity testing
2024 - IRG/WP 24-20723
Medium-density fiberboard (MDF) is one of the most used and versatile wood composites. Most of its use has been focused on interior applications. Adhesives such as p-MDI (polymeric methyl diphenyl diisocyanate) provide MDF with a better performance against moisture, but resistance against decay is also required for outdoor use. A mix of wood fibers, p-MDI, and 0.75%-1.5% of ZB was made to produce ...
S M Vega Gutierrez, T Olivadoti


Previous Page | Next Page