Your search resulted in 386 documents. Displaying 25 entries per page.
Laboratory Study of Relative Leachability of Chromated Copper Arsenate Preservative from Treated Woods among Soil Types of Sarawak
2014 - IRG/WP 14-50307
Wood and soils are important natural resources from the environment and serves mankind well respectively as structural materials and natural platform erecting such materials. With shortfalls of naturally durable timber species for protected in-ground uses under Malaysian environments, Chromated Copper Arsenate (CCA) treated woods are widely used instead, incurring serious potential threats of pres...
A H H Wong, P K F Chong
Evaluating the Effects of Post Dip-Treatment Laser Marking on Resistance to Feeding by Subterranean Termites
2016 - IRG/WP 16-10854
Dip-treatment of wood packing materials is often used instead of pressure treatment mainly because of issues relating to simplicity and cost. Packaging boxes fabricated for the United States Army are required to be dip-treated for at least one minute in an approved preservative solution prior to use. These boxes are expected to have a service life of up to 20 years in a wide variety of environment...
R A Arango, B Woodward, S Lebow
Transfer of microorganisms from wooden crates to foodstuffs: assessment of a transfer threshold
2016 - IRG/WP 16-20574
Wood is commonly used in contact with foodstuffs, for example for packaging fruits or vegetables. Most common species used are beech, pine, spruce and poplar. Wood is often considered as being less safe than plastic because it is less easy to clean whereas several studies have demonstrated that microorganisms cannot survive easily on wood (Milling et al., 2005; Revol-Junelles et al., 2005). Nation...
M Montibus, R Ismail, I Le Bayon, A Jasick, M Gabille, F Aviat, V Michel, M Federighi, M Kutnik
Release of Copper from Pressure Treated Wood
2016 - IRG/WP 16-20584
Micronized copper based wood preservatives including micronized copper quat (MCQ) and micronized copper azole (MCA) have been introduced commercially to the North American market since 2006 as alternatives to alkaline copper quat (ACQ) or soluble copper azole (CA) preservatives. Unlike ACQ or CA, MCQ and MCA use dispersed particulate copper particles rather than soluble ionic copper to make treat...
Jun Zhang, J Horton
Combustion and thermal characteristics of Korean wood species
2016 - IRG/WP 16-40727
This study examined the combustion and thermal characteristics of domestic woods in Korea. Wood was confirmed by a cone calorimeter according to the KS F ISO 5660-1 standard. The combustion properties of the wood were measured in terms of the heat release rate (HRR), total heat released (THR), mass lose rate (MLR), and ignition time (time to ignition; TTI). Also, the thermal properties were measur...
Huyun Jeong Seo, Jung-eun Park, Dong Won Son, Won-Joung Hwang
Enhancing wood properties through bio-based and non-biocidal co-polyesters
2016 - IRG/WP 16-40740
The commonly used wood preservation treatments are nowadays facing huge environmental issues, as well as increasing public concern. As regards those concerns, legislation tends to regulate the use of biocidal preservation chemicals.
Thus, it does appear crucial to provide alternatives to the use of biocides to allow different outdoor uses of wood such as for, posts, decking, and cladding or even ...
C L’Hostis, M-F Thévenon, E Fredon, P Gérardin
Creosote leaching from timber bridges in Norway – a practical classification approach
2016 - IRG/WP 16-40744
Creosote is widely used as a wood preservative for highway timber bridges in Norway. However, excessive creosote leaching at various highway timber bridge sites leads to a bad reputation for the use of creosote treated timber constructions and the use of wood in general. Macro- and micro anatomical factors such as amount of heartwood, annual ring width, annual ring orientation, ray- height and com...
A Treu, K Zimmer
A Case Study of Long-term CCA Preservative Leaching from Treated Hardwood Poles in a Humid Tropical Condition
2016 - IRG/WP 16-50324
Chromated copper arsenate (CCA)-treated Malaysian hardwoods have long been used as utility poles, posts, construction piles and motorway fencing in soil contact exposed to the threats of decay fungi and termites. Despite global concerns citing predominantly temperate conditions of long-term leaching of CCA toxic heavy metals from wood into surrounding soils and groundwater since the 1990’s, the ...
A H H Wong, W S M Chin
Development of a new method for wood hydrophobizing and fixation of copper compounds by chemical hardening of vegetable based modified oils
2016 - IRG/WP 16-40754
Wood products with ground and direct water contact, but without sufficient biological durability, have to be protected against biological degradation by fungi and other microorganisms. Due to European legislation (Biocidal Products Regulation 528/2012), the selection of possible chemical agents, which are still allowed to be used, is diminishing rapidly. The use of previously widely applied, very ...
C Swaboda, M Fischer, K Jacobs
Review of Leaching Experiments of CCA-Treated Wood and Wood Treated with Copper-based Alternatives
2017 - IRG/WP 17-50330
The objective of this study was to compare leaching rates of various wood preservatives from treated wood and the tests used to gather this information. The preservatives compared included CCA and the copper-based alternatives, MCQ, ACQ, and MCA. The tests compared included AWPA E11, SPLP, TCLP, and environmental leaching tests. Among all of the tests evaluated, environmental tests most closely si...
A Jones, J Marini, H Solo-Gabriele
Uncertainty in life cycle assessment of preservative treated wood – copper and freshwater ecotoxicity
2017 - IRG/WP 17-50331
Life cycle assessment (LCA) is a method for quantifying the environmental impacts of a product over the life cycle. In the last years, there have been a growing application of LCA in developments of environmental product declaration (EPD), which is utilised by professional procurement of materials for buildings. For legislative issues, LCA have also been used to assess application of creosote to t...
L G F Tellnes
Effects of wood protecting biofinish and linseed oil on fire behaviour and leachability of the fire retardant
2018 - IRG/WP 18-30728
A wood protecting biofinish is based on a protective and decorative fungal-based coating and a linseed oil impregnation (called Xyhlo biofinish). This biofinish enables the long-term use of wood in outdoor applications without using toxic chemicals.
The fire resistant properties of materials used in buildings are very important. Since Xyhlo biofinish is relatively new, only little information is ...
S Rensink, E J van Niewenhuijzen, M F Sailer
Selection of heat flux value for wood fire retardants testing using MLC
2018 - IRG/WP 18-40846
One of more crucial elements of investigating treated wood combustion properties with the use of a cone calorimeter is a proper selection of heat flux (HF). The HF level is directly reflected in time to ignition and a thermal degradation degree. The ignition of raw wood or of wood ineffectively protected against fire occurs at a low HF level, i.e. 10-20 kW/m2. By contrast, the ignition of wood whi...
B Mazela, W Perdoch, W Grześkowiak, A Batista
Influence of different triazoles as co-biocides in wood preservatives on efficacy and the environmental impact
2018 - IRG/WP 18-50333
In this study we investigated the efficacy and impact on the environment of different co-biocide triazoles in wood preservatives. Four different formulations (all containing 9.5% Copper) contained individual and combinations of cyproconazole, tebuconazole, propiconazole as co-biocides. Four formulations were tested according to EN 113 and EN 84 (ageing) to determine the brv for each formulation. T...
M Klamer, T Jensen, S Bang-Achton, E Morsing
Declaring life cycle inventory of toxicity related emissions in environmental product declarations of preservative treated wood products
2018 - IRG/WP 18-50339
Life cycle assessment (LCA) including impacts on toxicity for preservative treated wood has been shown to have large uncertainties. With the growing demand for verified LCA in environmental product declarations (EPD), the need for reliable data is crucial for realistic assessment of wood products. Uncertainty is caused by several issues such as service life prediction, leaching rates and calculati...
L G F Tellnes, C Askham, P-O Flæte, M Klamer
The development of a suitable fire retardant for Radiata pine and other species
2019 - IRG/WP 19-30744
The use of fire retardant chemicals, with the overarching aim of creating a safer environment is not a new one, however it is generally under-developed and is often afflicted with an image of environmental and health issues and misperceived high costs. There is an ever-increasing need and desire for effective fire retardancy in timbers to inhibit or suppress the combustion process. This is paramou...
B R Derham, M R Fortune
Improvement of wood decay and termite durability resulting from combined treatments based on borax/phenol-formaldehyde impregnation followed by thermal modification
2019 - IRG/WP 19-40871
This study determined the factors influencing the boron content after leaching of pine blocks impregnated with aqueous solution of phenol-formaldehyde (PF) resin with or without borax and subjected to heat treatment by response surface methodology. An experimental design permits to analyze the effects of heat treatment temperature (150, 185 and 220°C), curing time (5, 12, 5 and 20 hours), resin c...
S Salman, M-F Thevenon, A Petrissans, S Dumarcay, P Gerardin
Validating a short-term laboratory method to assess the resistance of timber to biodegradation by marine wood-borers
2021 - IRG/WP 21-10975
Novel approaches to protecting wood in coastal and marine environments are needed as the use of traditional broad-spectrum biocides are now restricted. Wood is widely utilised in marine environments where it can be rapidly degraded by wood-boring organisms, causing billions of dollars of damage per annum. Biocidal compounds such as CCA and creosote have been popular treatments for timber products ...
L S Martin, J R Shipway, G P Malyon, S M Cragg
Wood modification reduces the feeding rate of the wood boring crustacean, Limnoria quadripunctata
2022 - IRG/WP 22-10993
Adult Adult Limnoria search for new wood once their current piece disintegrates from tunnelling. During this time, they do not have access to wood so experience a period of starvation and must feed again once settled. Wood modification offers protection to marine structures by reducing the feeding rate of Limnoria and therefore can reduce recruitment of adults from distant pieces of wood. Chemical...
L S Martin, S Lande, M Westin, S M Cragg
A new approach to wood protection: Potential of biologically synthesised CuO and ZnO nanoparticle formulation as a wood preservative
2022 - IRG/WP 22-30758
Even though metal nanoparticles are effective in protecting wood, they are less preferred, as they are synthesised using methods which are expensive and are not environmentally friendly. Biological synthesis of nanoparticles using plants, fungi, yeast, bacteria and viruses, has been accepted as an alternative approach and is referred to as green synthesis. Utilization of biologically synthesised n...
Shiny K S, R Sundararaj, N Mamatha
Properties of Iron (II) Sulphate treated Norway Spruce
2022 - IRG/WP 22-30765
Exterior wood is exposed to various environmental factors that cause weathering. Weathering is important primarily from an aesthetic standpoint. However, not all parts of the building are equally susceptible to weathering. Parts exposed to moisture will discolour faster than protected parts, such as wood under roof overhangs. To achieve fast and uniform artificial greying, a surface treatment with...
B Lesar, M Humar, M Škamlec
Environmentally Friendly Wood Modification based on Tannin-Furfuryl alcohol - Effect on stabilisation, mechanical properties and decay durability
2022 - IRG/WP 22-40929
Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-f...
M Mubarok, E Azadeh, F O Akong, S Dumarçay, A Pizzi, C Charbonnier-Gérardin, P Gérardin
A Comparison of Cross-Laminated Timber (CLT) Floor Panels using Finite Element Analysis and Experimental Fire Testing
2022 - IRG/WP 22-40955
Cross-laminated timber (CLT) is a relatively new timber product and has gained popularity in North America and Europe as a construction material. As a sustainable engineered timber product, CLT offers many advantages over solid wood, concrete, or steel construction. However, the use of timber in medium to high rise buildings is often avoided mainly due to its combustible nature. In this paper, a n...
M Yasir, A Macilwraith, K Ruane
Optimisation of accelerated weathering procedure as an alternative to natural weathering
2023 - IRG/WP 23-20693
Comprehensive tests need to be performed to obtain the most accurate data possible on the durability of wood. The most reliable performance tests are field tests. However, since this is very time-consuming, we frequently rely on laboratory tests. To increase the reliability of the laboratory tests, samples are preconditioned with natural or artificially accelerated weathering methods that simulate...
E Keržič, M Humar, V Vek
Field durability testing of wood above ground - Part 1: 15 years’ experience with the Bundle method
2023 - IRG/WP 23-20695
A ‘jack of all trades’ method for above-ground wood durability testing has been sought for decades, but until now no method has found its way into standardization. The method of choice shall be applicable for untreated and treated wood – ideally also for wood composites. It shall be reproducible, objective, fast, easy, and inexpensive. Finally, it shall provide high predictive power.
This s...
C Brischke, G Alfredsen, L Emmerich, M Humar, L Meyer-Veltrup