Your search resulted in 35 documents. Displaying 25 entries per page.
Development of Wooden Fireproof Structures for Mid- and High-rise Buildings in Japan
2021 - IRG/WP 21-30757
When constructing a mid-to-high-rise building more than 4 stories in general in Japan, it is necessary to have a fireproof structure stipulated by the Building Standard Law. The performance required as a fireproof structure in Japan is generally stricter than in other countries, and it is required to be structurally sound after a fire even without fire extinguishing activities. In order to satisfy...
D Kamikawa, M Harada, H Matsunaga, R Takase, N Hattori, Keisuke Ando, M Miyabayashi
Effects of Borax and Boric Acid as Fire Retardants on the Resistance of Pterygota macrocarpa Wood to Fire Tests
2022 - IRG/WP 22-30770
The combustible nature of wood as a building material, when exposed to hazards of fire underscores the reason for fire retardant treatments. Pterygota macrocarpa wood is commonly used by builders in Nigeria for roof and other structural applications. Therefore, this study was carried out to assess the effect of Borax and Boric acid on the fire-retardant properties of P. macrocarpa wood. Wood sampl...
J M Owoyemi, O Apogbona, T O Akinwamide
Carbon nanotubes and multifunctional silane additive as fillers in PF resin and their effect on the composite flammability
2023 - IRG/WP 23-30783
Adhesive bonds are the most readily modifiable and, at the same time, give the greatest scope for modification of components of lignocellulosic composites. A study of a manufactured lignocellulosic composite based on a phenol-formaldehyde resin and pine veneer with additives modifying the properties of the resin was made. The multifunctional commercial silicon oxide Protectosil 851 and multi-walle...
W L Grzeskowiak, B Mazela, T Prowadzisz
Recent studies into improved fire retardancy of wood undertaken at Luleå University of Technology
2023 - IRG/WP 23-30784
Modern construction is moving more towards engineered wood products, such as glulam and cross-laminated timber (CLT). This increase is driven by the aspiration to deliver high-rise buildings with enhanced environmental profiles and human well-being. This desire to use wood in construction is pushing the need for fire treatments capable of meeting a products service life. However, the use of wood ...
D Jones, C-F Lin, I Kim, E Garskaite, O Karlsson, D Sandberg
Identifying compatible waterborne timber preservatives and fire retardants for use in a VPI system: a practical approach
2023 - IRG/WP 23-30796
To enhance the use and suitability of timber in all applications in both exterior and interior settings, timber typically needs to be treated with a preservative and/or a fire retardant chemical. Combining fire retardants with preservatives into a single treatment process has been a long-term aim of researchers in the timber preservative industry because of the significant logistic and economic ad...
R Robinson, S Meldrum
Effects of phosphoric acid and diammonium phosphate treatments on the physical and fire-retardant properties of five selected Nigerian wood species
2024 - IRG/WP 24-20713
Wooden products in buildings are major sources of fuel for fire outbreaks. Effects of phosphoric acid and diammonium phosphate treatments on the physical and fire-retardant properties of wood species commonly used in buildings were evaluated. The timber species utilized in this study were sourced from the sawmill sector located in Akure, Nigeria, encompassing Brachystegia laurentii, Khaya ivorensi...
J Owoyemi, T O Akinwamide, O M Ibrahim, E A Iyiola
Enhanced Flame Retardancy in Wood via In Situ Polymerization of Phosphorus-Containing Ionic Liquids
2025 - IRG/WP 25-20736
Wood, a ubiquitous material in furniture and construction, is limited by its natural flammability. Existing wood flame retardant technologies are often ineffective and lack environmental sustainability. Ionic liquids (ILs), known for their non-flammability and non-volatility, offer a green solvent solution to these challenges. In this study, we synthesized a novel phosphorus-containing, polymerisa...
J Jiang, Y Wu, J Luo, W Qu
Enhancing the Fire Resistance of Spruce Wood through Treatment and Additive Application: Small Flame Test Method
2025 - IRG/WP 25-20737
Spruce panels treated by spraying with Burnblock® spray, were tested using “Small flame test method” according to EN ISO 11925-2:2011. The fire retardant product from Burnblock ApS is reported by the Danish company to be bioderived and non-toxic. The results for the untreated planed spruce showed moderate flammability whereas the Burn Block treated panels exhibited exceptional fire resistance...
E S Mujanic, R Hasanagic, E Kerzic, L Fathi, M Humar
Securing Flame Retardancy in Wood: Durability After Artificial and Natural Weathering Test
2025 - IRG/WP 25-20738
The outdoor use of wood is often limited by challenges such as dimensional instability, vulnerability to fungal decay, and high flammability. Traditional flame retardant treatments improve fire resistance but suffer from significant leaching under environmental exposure, reducing their long-term effectiveness. This study introduces an innovative solution by integrating flame retardants with DMDHEU...
M Wu, L Martin, H Militz
Sustainable and environmentally friendly bio-based protection against fire
2025 - IRG/WP 25-20756
Flame-retardant agents are used to confer fire resistant properties with effects strongly dependent on their ability to form char during the thermal degradation. The char coats the polymeric materials and provides a good barrier against heat and oxygen diffusion, thus reducing the combustion rate of the polymeric materials. Halogenated agents that are used today are toxic and may cause severe heal...
M Tanase-Opedal, A Larsson, P O Flaete