IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 1386 documents. Displaying 25 entries per page.


Inhibition of wood decay and termite damage by calcium precipitation
1996 - IRG/WP 96-30111
Fungal decay of wood in service, especially brown rot, results in billions of dollars (US) of losses annually. Recent environmental restrictions, both U.S. and international, are limiting or eliminating the use of broad spectrum biocides for wood preservation, primarily due to problems with disposal. In order to design new, environmentally benign methods for control of wood decay fungi, it is esse...
F Green III, T A Kuster, L Ferge, T L Highley


The effect of high temperature and long pressing time on the dimensional stability and decay resistance of OSB
2002 - IRG/WP 02-40237
The exterior use of OSB is restricted because when it is exposed to wet conditions swelling, loss of internal bond strength (IB) and decay occur. In this study an alternative process of pressing which results in the production of dimensionally stable and a more decay resistant strandboard was investigated. Boards were pressed at elevated temperatures for prolonged pressing cycles and their physi...
G J Goroyias, M D C Hale


Copper based water-borne preservatives: The use of a thin section technique to compare the protection of wood by copper based preservatives against soft-rot and bacterial decay
1987 - IRG/WP 2286
This paper describes the techniques developed and gives examples of results obtained for the performance of copper based wood preservatives against both the bacterial and fungal hazards....
A M Wyles, D J Dickinson


Effects of artificial UV weathering and soft rot decay on heat treated wood
2005 - IRG/WP 05-40302
Oil and inert gas oven heat treated pine wood strips 100 µm thick were mildly heat treated (200°C, 30 mins linseed oil, 120 mins oven). Following treatment, specimens were exposed to UV weathering (300 hours) and decay by the soft rot fungus, Chaetomium globosum. The effects of each treatment were assessed by zero span tensile testing, microscopy and by FTIR. Tensile testing of heat treated s...
M D C Hale, S C Ghosh, M J Spear


Effects of a formaldehyde and sulphur dioxide treatment on decay and mechanical properties of aspen waferboard
1983 - IRG/WP 3242
Aspen wafers were sequentially treated under vacuum with formaldehyde and sulfur dioxide gas and pressed into waferboard bonded with powdered phenol formaldehyde resin. Decay resistance and strength properties were determined before and after simulated weathering. The water resistance of the phenol bonding system was lost in board made from the gas-treated wafers. This white rot fungus Coriolus ve...
E L Schmidt


Relative performances of DNBP and CCA wood preservatives in accelerated decay tests
1988 - IRG/WP 3496
The effectiveness of 2-sec-butyl-4,6-dinitrophenol (DNBP) was compared with that of CCA. Test blocks of Pinus patula and Eucalyptus grandis were impregnated to precisely known retentions of approximately 3, 6, and 10 kg/m³ CCA and solvent-borne DNBP respectively. They were then challenged in decay tests comprising soil burial and exposure to monocultures of Chaetomium globosum, Coriolus versicolo...
W H Schnippenkoetter, L D Abraham, A A W Baecker


The Biocidal Products Directive ( 98/8/EC ) - its consequences for the wood preservation industry
2001 - IRG/WP 01-50166-04
1. The Current Position This European Union Directive is one of the most technically complex pieces of legislation that has been developed by the European Commission (EC). Although the Directive was to have been implemented in the legislation of individual Member States of the EU by May 2000 progress has been slow. A number of Member States have yet to declare the Competent Authority who will handle their legislation. The body text of the Directive cannot stand-alone and is dependent on ancillary regulations and the development of technical guidance for both the Competent Authorities in the Member States and also industry to understand their roles in the whole process for the regulation of biocides and the biocidal products containing them. The process is far from complete in terms of a piece of workable legislation and this leaves not only industry but also the Competent Authorities with significant areas of uncertainty. This is potentially economically and socially damaging to the marketing and use of biocides and biocidal products. Because of this evolutionary process this paper can only be written in general terms as by the time the symposium takes place some significant changes to the position at the time of writing may have occurred. 2. Background The Biocidal Products Directive (98/8/EC), (BPD), is a directive which requires that biocides ( as active substances) are approved for use within the EU and the individual biocidal products containing these active substances are approved for use by the Competent Authority(s) of the Member State(s) in which it is intended to market the product. The product authorisation obtained in the first Member State should be mutually recognised by the other Member States in which application for authorisation to place the product on the market is sought. The Directive has to be seen in the context various other Directives, notably the Plant Protection Directive 91/414/EC). Biocidal products are grouped in the directive into twenty three "product types" and wood preservatives are Product Type 8. The intention of the directive is to harmonise the requirements for the placing of biocidal products and active ingredients on the market throughout the EU. EU wide use of so-called Common Principles are intended to be used to assess the dossiers in order to achieve a common approach and eliminate the current situation where individual Member States apply their own particular national approaches and criteria in the assessment and regulation of products . Annex IIA of the directive identifies the data requirements for the active substance and Annex II B for the biocidal product. There are additional data requirements identified in Annexes IIIA and IIIB for each product type reflecting potential for exposure to man and the environment. 3. Entry onto Annex I Any new active substance will require approval before it or any biocidal products including it can be placed on the market. The dossier to be submitted to the EC will have to include additional data and risk assessments for the product types (as defined in the BPD) in which it will be intended to be used. For those active substances that are accepted as being existing substances on the market before May 2000 (say in wood preservatives) these will be ranked and prioritised. This process is being defined in the so-called: Review Regulations. 4. An environmental directive There is no doubt that this Directive has a high environmental content in terms of the data and the associated risk assessments which are to be prepared. The protocols and the end points for some of these data requirements are still being developed. In general the EC considers that modelling exposure using human and environmental exposure scenarios covering the end use of the product is an acceptable approach . Data are required to enable these scenarios to be modelled and risk assessments made. It is necessary that regulators do not make decisions based on hazard assessment alone in the absence of fully worked out and agreed emission scenarios to define exposure levels which generate a realistic worst case risk assessment. Risk is a function of both hazard and exposure. A lot of work has been done in the development of Technical Notes for Guidance intended to help the regulator and the applicant in the submission and the interpretation of the data. Whilst it may be the case that the human toxicity data requirements still leave questions to be answered it is in the environmental aspects part of the regulatory process where there is still much work to be done. The Directive would seem to rely heavily on the development of Pass / Fail criteria in simulation tests. This is a big subject and of key importance to the risk assessment. 5. Wood preservatives ---- a test case Wood preservation has achieved a certain reputation. On the one hand it is said that a prime reason for the development of the Biocidal Products Directive arose from European problems in the regulation of the marketing and use of dangerous substances, notably wood preservatives. On the other hand because wood preservatives have been regulated by a number of Member States for many years it is believed they are well understood. The EC and the Member States also wanted to be seen to have achieved early success in the implementation of the Directive therefore the decision was taken to start, following failings with the speed of progress of the Plant Protection Products Directive, with a product type they knew all about i.e. wood preservatives. There is no doubt that there is a much greater understanding on the exposure scenarios, both human and environmental, for wood preservatives than many other product types. However, would it not have been better to have tackled some of the other product types where such an understanding is much less well developed? It is regrettable that the EC and Member States did not feel able to accept the results of an EC sponsored study (Haskoning report) on the assessment of risks for all the product types covered under the BPD. The results of this study clearly showed that wood preservatives did not constitute the most significant risk to man or the environment and in fact the risk was significantly greater for other product types. 6. Wood preservatives and the OECD Biocides Programme Another speaker will be covering this subject in more detail. Suffice it to say that because of the perception there was good knowledge about wood preservatives again they were selected as the pilot for an OECD project looking at environmental and human exposure assessment under the OECD Biocides Programme. The findings from two OECD Workshops actually demonstrated there was still much to be learnt about wood preservatives in order to refine the risk assessments to a state where they would be sufficient for the requirements of the BPD. This work is ongoing but it clearly demonstrates the problems that both the regulator and industry will have in the preparation and the assessment of the dossiers for both the active substances and the biocidal products. This is especially the case for other biocidal products that have not been subject to the same kind of regulation that wood preservatives have subjected to in the past. 7. Inorganic and organic biocides With current wood preservation technology there is still a dependence on inorganic chemicals such as copper (in conjunction with other biocides) or with chromium, as well as arsenic and boron for many end use applications. This is very much the case where a long term service life is a key factor in the use of treated wood for that end use. These substances are commodity chemicals and are also covered under the Existing Substances Regulations (EC) 1488/94. There is also work going on revising the Technical Notes for Guidance covering them . This includes a significant addition in the environmental risk assessment area. Efforts are being made to integrate and coordinate the requirements for both the BPD and the Existing Substances Regulations and OSPAR ( OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic). OSPAR refers to the Oslo Paris Convention. Whilst the BPD seems primarily aimed at the regulation of biocides based on organic chemicals wood preservative products may contain both inorganic and organic components. Indeed there are probably few wood preservative formulations on the market that contain only one active substance. This must have a significant impact on the way the dossiers are prepared for the active substance and the biocidal products and how they are assessed both at the EC and the Member State level. 8. Consequences of the BPD for the wood preservation industry Whilst this paper addresses the consequences for the wood preservation industry per se, it must not be overlooked that there may be implications for the fabricaÈors of articles made from treated timber. Some current wood preservative formulations may over a period of time be withdrawn from the market because the risks and costs of generating the data and the preparation of the dossier make the product economically unviable. The presence of large working volumes of wood preservative solutions at treatment plants requires realistic withdrawal periods to avoid the unnecessary disposal and associated environmental risk of products that have been used satisfactorily for many years. 9. Availability of active substances The structure of the industry has changed dramatically in the past few months and there is no doubt that other changes both within and outside the wood preservation industry itself are yet to happen. The original differentiation between formulator of wood preservatives and active substance suppliers to the wood preservation industry has become blurred. Some of the active substances used in wood preservation are used in other either other biocidal product types or in products regulated under another directive, e.g. Plant Protection Products Directive 91/414/EC. 10. Data protection This continues to be a key issue for industry and some companies may find it strategically or financially necessary not to support an active substance in a particular product type thus leaving that sector without being able to use the active substance. The coming months will start to reveal which active substances are likely to be supported, at least through the notification process. Formulators are therefore in a close dialogue with their suppliers to try to determine their intentions on whether or not they intend to support their active substance. Today's wood preservative formulations are largely multi active substance based. Product costs, efficacy spectra, niche marketing and other considerations have made this process inevitable. New wood preservative formulations take time to research and develop and the continuity of availability of a choice of active substances is of key importance. A lack of adequate return on investment necessary to sustain the development of new products could have a negative impact on innovation and the rate of introduction of new products. It is extremely unlikely that any new active substance will be solely developed for use in wood preservation. This would be an effect contrary to expectations of the EC. The situation with wood preservatives is complicated by the fact that treated wood is a construction product and comes under the scope of the Construction Products Directive (89/106/EEC) (CPD). Products under the scope of the CPD are required to meet certain so-called essential requirements and one of these is durability. Demonstration of compliance involves the extensive suite of CEN wood preservative efficacy tests. Even relatively small changes in formulations may require extensive re-testing under the EN 599 regime in some Member States. 11. Task Forces Companies are encouraged by the EC to enter into Task Forces in order to reduce the burden of testing on animals and also to reduce the number of dossiers to be reviewed for each active substance. Ideally, and understandably, the EC would like one dossier per active substance. Parts of the wood preservation industry have been co-operating in Task Forces and much practical experience has been gained. Even closer co-operation will be required and this will enable companies to pool experience and expertise and manage their financial exposure to potentially high regulatory costs by sharing them amongst a larger number of parties. 12. Financial aspects Industry will have to make some best guesses with respect to its investment programmes for supporting its portfolio of products. Formulators and active substance suppliers are likely to group into Task Forces in order to reduce their costs in terms of data generation and the fees likely to be charged at the EU and the Member State level for the assessment of the dossiers. The compilation of the dossiers requires specialist expertise to assist the industrial applicant(s). This is likely to cost in the order of £100,000 per active substance, not including the costs of generating any data. The Rapporteur State's costs for reviewing the dossier is also expected to be of the same order. Clearly these kinds of costs will impact on innovation. An adequate payback must be available to the company to justify this level of investment. 13. Will mutual recognition work? Member States are required to recognise the authorisation of the biocidal product placed on the market in the first Member State when subsequent applications are made to place the product on the market. This is a fundamental principle of the BPD, although there is concern that Member States continue to have enough flexibility to prevent this happening if there are particular concerns in that Member State. Industry very much hopes this will not be the case and that mutual recognition, a fundamental principle of the BPD, will work in practice. 14. Environmental aspects Biocidal products such as wood preservatives are generally applied in controlled situations and not over large areas. Consequently any emissions can be considered to be from discreet sources, such as treated timber or potentially from timber treatment plants. This is in contrast to plant protection products and some other biocidal products that are usually dispersed over a relatively large area. Because of this a lot of work is required to be done to re evaluate how the environmental aspects of biocidal products such as wood preservatives can be assessed in an objective manner. The criteria that define an emission and how the PEC (Predicted Environmental Concentration) for each environmental compartment is determined are critical. The wood preservation industry, through the EWPM (European Wood Preservative Manufacturers Group), has been working with institutes and other interested parties in a co-operation known as the EFG (Environment Focus Group) to progress the development of appropriate methodology. Data will be required for both primary and secondary exposure to treated timber. The protocols for this work are yet to be agreed. This work is being further progressed in the OECD together with input from CEN TC 38 WG27. This co-operation between the OECD and CEN is extremely significant in that it is, I believe, the first time such a co-operation has taken place in the development of an OECD Guideline. If one considers all of the end uses where treated timber may be found carrying out a risk assessment with few guidelines on how it should be done is a very uncertain process for both industry and the regulator. Reliance on so-called expert opinion may be inadequate. 15. Comparative assessment (the substitution principle) This is a process whereby the health safety and environmental properties of acti_u101 ? substances used in the same product type could be compared and those with the most undesirable properties would not be placed on Annex I. Consequently biocidal products containing them would have to be removed from the market. This process is embodied in the BPD but it was initially considered that it would only be applied in the event of problems arising with active substances or products containing them rather than being used as a screening tool early on in the review process for active substances. This area is still an uncertain one with Member States having different interpretations of this principle. It is unfortunate that the wood preservation industry could be used to test out this concept at a European level. The consequences of this principle could be further losses of active substances available to the wood preservative formulators. 16. Substances of concern The BPD is not only concerned with the active substances that are formulated into the biocidal product but also with so-called "substances of concern". These are defined as any substance, other than the active substance, which has the inherent capacity to cause an adverse effect on humans, animals or the environment and is present or is produced in a biocidal product in sufficient concentration to create such an effect. There are significant implications for the formulator of the biocidal product . The formulator may have to submit an extensive dossier containing toxicological and metabolic as well as ecological data on each of the substances of concern when seeking approval for the biocidal product. There may be classes of compounds that become unavailable to the formulator either because of the risks posed by the co-formulant or because the cost of generating data will be uneconomic. 17. The wood preservation Industry's view on the BPD Industry has supported the development of the BPD since its conception in 1989. It is still supportive it but believes that the degree of complexity is disproportionate to the level of risk when it comes to wood preservatives. After all wood preservatives have been regulated for a long time and in reality there have been few significant health safety and environmental problems associated with them. Industry believes there is no need to determine an absolute understanding about a biocide and its application but rather there is a need to determine the level of understanding that will enable characterisation so that a risk assessment can be made. The wood preservation industry has sought either directly or through representative bodies a pro-active and collaborative approach with the regulators although at times this appears to have encouraged inappropriate demands. The regulators have invariably responded positively to this however they may not always understand the burden in both time and resource in having made wood preservatives the test case. Industry hopes that its efforts to be pro-active will be recognised and will be dealt with equitably when considered before the other product types defined in the Biocidal Products Directive.
D Aston


Germination of basidiospores on preservative treated wood after leaching or natural weathering
1981 - IRG/WP 2150
In tests of residual toxic efficacy after leaching or natural weathering, spore germination with Gloeophyllum trabeum has proved to be a less reliable criterion of attack than when used with unaged preservative treatments. Since spores sometimes prove more tolerant than their parent mycelium, their use should be continued....
J K Carey


Report of activity of CEN/TC 38: Test Methods for Wood Preservatives
1987 - IRG/WP 2287
G Castan


Rapport sur l'activité du CEN/TC 38 "Méthodes d'essais des produits de préservation du bois"
1982 - IRG/WP 2188
M Pottevin


Towards a colour assay of wood degradation
1982 - IRG/WP 2180
A colour assay for the enzyme catalase is described. Since the activity of this enzyme has previously been shown to be correlated with degree of wood degradation as determined by other methods, this assay may provide a rapid quantitative indicator of superficial and internal wood decay....
M A Line


Examining environmental conditions and the biodeterioration of historic waterlogged wood: the Kolding Cog
2002 - IRG/WP 02-10441
Survival of waterlogged wood from thousands and in rare cases millions of years presents scientists with a unique opportunity to examine wood specimens which, due to select properties of the wood itself and/or the depositional environment, have not been completely degraded. This paper discusses the biodeterioration of a submerged shipwreck buried in Kolding Fjord, Denmark for the past 1000 years....
B A Jordan, D J Gregory, E L Schmidt


Movement and persistence of chloropicrin, Vapam, Dazomet and methylisothiocyanate in red and white oak timbers
1992 - IRG/WP 92-3728
This study describes the movement and persistence of four fumigants in sawn red and white oak timbers exposed out of ground contact for 2 years. Chloropicrin moved the furthest from the point of application, and was the most persistent. Vapam was next best, followed by Dazomet. Methylisothiocyanate (MIT), applied as pellets, was not effective, probably because MIT was lost from pellets prior to tr...
T L Highley


Susceptibility testing protocol for powderpost beetles in Australia
2002 - IRG/WP 02-20242
Several species of lyctine (powderpost) beetle are able to attack a range of hardwood timbers in Australia. Powderpost beetles infest only the starch-containing sapwood of certain hardwoods and do not infest softwoods. Attack by powderpost beetles on susceptible timber in Australia is almost inevitable and may continue until the food resource is completely utilised. Prevention of powderpost beetl...
B C Peters, J W Creffield, R H Eldridge


Testing method for the treatability of wood
1994 - IRG/WP 94-40031
In order to test and classify the treatability of wood species in pressure treatment processes with water-based solutions, a laboratory method was developed which allows the testing of small samples and limited sections of a stem, e.g. sapwood. The penetration of different liquids was determined separately concerning the three anatomical directions of wood. The common parameters for pressure impre...
A O Rapp, R-D Peek


Monographic information on Serpula incrassata (Berk. and Curt.) Donk
1980 - IRG/WP 1128
J G Palmer, W E Eslyn


Influence of variable lignin content on brown rot decay of wood
1987 - IRG/WP 1320
Compilation of published data and new experiments with brown-rotting fungi on different timber species suggest that their decay activity, in contrast to soft rot and white rot fungi, is not greatly influenced by the type or amount of lignin present....
T Nilsson, G F Daniel


First draft of a monographic card for Gloeophyllum abietinum (Bull. ex Fr.) Karst
1973 - IRG/WP 116
T Hof


Defining fungal decay types - Final proposal
1988 - IRG/WP 1355
The term soft rot is proposed for all forms of decay caused by Ascomycetes and non-basidiomyceteous Fungi imperfecti. The terms brown rot and white rot should be used only for decay caused by Basidiomycetes. Brown rot is characterized by extensive depolymerization of the cellulose and limited lignin degradation. White rot is characterised by significant degradation of the lignin component in wood....
T Nilsson


The attack of naturally durable and creosote treated timbers by Limnoria tripunctata Menzies
1995 - IRG/WP 95-10132
Limnoria tripunctata was found tunnelling in creosote treated Douglas fir (Pseudotsuga menziesii) pilings and naturally durable greenheart (Ocotea rodiaei) gate seals at two sites on the south coast of the United Kingdom. Examination of thc creosote-treated wood showed that Limnoria tunnels were concentrated at a depth of 2-3 cm from the timber surface, where creosote loading was lower. Fewer tunn...
A J Pitman, G S Sawyer, G F Daniel


Iron in stone wool - one reason for the increased growth and decay capacity of Serpula lacrymans
1992 - IRG/WP 92-1537
The chemical compositions of stone wool and glass wool were analysed. There was more iron in the stone wool than in the glass wool. It was found that iron present in stone wool was easily dissolved by oxalic acid that Serpula lacrymans is able to produce. The stone wool promoted the decay of pine wood by Serpula lacrymans. The glass wool had no effect on the decay capacity of Serpula Iacrymans. Th...
L Paajanen, A-C Ritschkoff


An engineering model for the decay of timber in ground contact
2003 - IRG/WP 03-20260
To predict the residual strength of an engineered structure, it is first necessary to predict the effect of decay. A model was developed in which the effective area of structural decay in large section timbers was defined as that area that could be picked out with a pen-knife. Some limited studies indicated that for practical purposes the remaining wood could be assumed to have its full residual s...
R H Leicester, C-H Wang, M N Nguyen, J D Thornton, G Johnson, D Gardner, G C Foliente, C MacKenzie


Flow charts for termite and decay tests to determine the natural durability of Japanese cedar (Cryptomeria japonica D. Don)
2008 - IRG/WP 08-20385
This paper deals with the experimental flow charts that were used for determination the effects of fungal decay and termite attack on Sugi heartwood during the course of the study of “Comparative studies of natural durability of Japanese cedar (Cryptomeria japonica D. Don) among the geographic cultivate”, which was carried out by Usta et al (2006)....
I Usta, S Doi


Natural Durability Classification Systems Used Around the World
2009 - IRG/WP 09-10694
Around the world natural durability is classified in different ways. The nature and rigor of the tests used to measure durability, the method of classification based on these data, and use of these classifications to specify end uses or predict service life all vary. This can lead to confusion among people not familiar with the various systems used. This review describes the methods used to classi...
R Stirling


The resistance of wood coated with different solvent-borne paints against colonisation by decay fungi
2009 - IRG/WP 09-40468
This paper examines different solvent-borne paints characteristics and their decay resistance when applied on pine wood surface. It was determined by the standard ENV 839 procedure. The part of samples were subjected to accelerated ageing according to the EN 84 standard. The discussed commercial paint systems were typical stains or penetrating oil-based products, with or without biocides....
B Mazela, P Hochmańska


Previous Page | Next Page