IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 1579 documents. Displaying 25 entries per page.


Quasi-in-situ durability tests on oak timber bridges
2013 - IRG/WP 13-20510
This study aims on developing a method for determination of wood durability on samples taken from real structures in service. Therefore quasi-in-situ durability tests have been conducted exemplarily on timber bridges made from English oak (Quercus robur L.). Drilling cores were found to be a feasible alternative to standard specimens for laboratory durability tests against pure cultures of Basidio...
C Brischke, C J Behnen, M-T Lenz, K Brandt, E Melcher


Determination of the natural durability of solid wood against wood-destroying fungi - a European round-robin test
2013 - IRG/WP 13-20511
In Europe the durability of wood against wood-destroying basidiomycetes is tested according to CEN/TS 15083-1 (2005). Hitherto existing experience with this standard is quite heterogeneous and results from previous round-robin tests have stayed unreported or have been reported incompletely. In particular the need for natural pre-weathering of the test specimens to allow potential detoxification of...
C Brischke, C R Welzbacher, A Gellerich, S Bollmus, M Humar, K Plaschkies, W Scheiding, G Alfredsen, J Van Acker, I De Windt


Development of a rapid method to assess the rate of fungal colonization of wood
2013 - IRG/WP 13-20531
Testing of wood durability is today done mainly with accelerated exposure tests under rather realistic conditions (in ground, outdoors with moisture traps etc). Although such tests are accelerated with respect to the conditions that outdoor exposed wood structures are exposed to, they tend to take rather long time. The present paper presents the development of a rapid method intended to assess at ...
L Wadsö


Relevance of natural pre-weathering for laboratory decay tests with native, modified, and preservative-treated wood
2013 - IRG/WP 13-20522
The on-going development of new wood protection systems is hampered by the long term field tests currently in use. New accelerated test methods and novel methods for faster and more accurate evaluation of wood protection methods are requested. For both field decay tests and accelerated laboratory decay tests, limitations are imposed. This study is part of the research program ‘WoodBuild’, whic...
A Pilgård, C Brischke, L Meyer


Microbial Community Analysis of Naturally Durable Wood in an Above Ground Field Test
2014 - IRG/WP 14-10826
This paper presents preliminary results of an above ground field test wherein eight naturally durable wood species were exposed concurrently at two sites in North America. Surface samples were taken at regular intervals from non-durable controls and compared to their more durable counterparts. Terminal Restriction Fragment Length Polymorphism was performed to characterize the microbial (bacteria, ...
G T Kirker, S V Diehl, P K Lebow


Selection of Wood-Rotting Basidiomycetes for Inoculation of an Accelerated Soil Bed Test
2014 - IRG/WP 14-20543
There is a need for a test method that guarantees exposure of treated wood to soil and preservative-tolerant wood-rotting basidiomycetes as standard field tests do not do this reliably. The ability of a range of selected wood-rotting basidiomycetes to grow through unsterile forest soil was investigated in a Mason jar test assembly. None of the white-rot fungi in test grew through this soil. Fou...
P I Morris, A Uzunovic, J Ingram


Changes in mechanical and chemical properties of wood exposed outdoors
2014 - IRG/WP 14-20550
The aim of this study was to investigate differences in certain mechanical and chemical properties of three different wood species (common beach (Fagus sylvatica), Norway spruce (Picea abies), and copper-ethanolamine (CuE) impregnated Norway spruce (Picea abies)) that were exposed in use class 3 (CEN, 2006) for periods between 4 and 30 months. The results show, that changes in the investigated me...
N Thaler, C Brischke, D Žlindra, V Vek, M Humar


Resistance to Decay Fungi of Scots Pine Impregnated with Natural and Chemical Preservatives
2014 - IRG/WP 14-30650
In this study, heart-wood and sap-wood specimens of the Scots pine which is naturally grown in Turkey were treated with natural (valex) and some chemical preservatives such as CCA - C (Copper / Chrome / Arsenic), CBA - A (Copper / Boron / Azole). The wood protective efficacies of these preservatives were investigated by means of fungi decay test (EN 113). As a result of the study it was found t...
S Yildiz, U B Şimşek


Decay resistance of wood-plastic composites reinforced with extracted or delignified wood flour
2014 - IRG/WP 14-40655
The moisture and decay resistance of wood-plastic composites (WPCs) reinforced with extracted or delignified wood flour (WF) was investigated. Three different extractions were preformed: toluene/ethanol (TE), acetone/water (AW), and hot water (HW). Delignification (DL) was performed using a sodium chlorite/acetic acid solution. All WPCs specimens were made with 50% by weight HDPE and WF, first com...
R E Ibach, Yao Chen, N M Stark, M A Tshabalala, Yongming Fan, Jianmin Gao


Modern Instrumental Methods to Investigate the Mechanism of Biological Decay in Wood Plastic Composites
2014 - IRG/WP 14-40674
Various instrumental techniques were used to study the fungal decay process in wood plastic composite (WPC) boards. Commercial boards exposed near Hilo, Hawaii (HI) for eight years in both sun and shadow locations were inspected and tested periodically. After eight years of exposure, both boards were evaluated using magnetic resonance imaging (MRI), while a selected area of the board exposed in sh...
G Sun, R Ibach, M Gnatowski, J Glaeser, M Leung, J Haight


Bundle tests - Simple alternatives to standard above ground field test methods
2016 - IRG/WP 16-20581
Within this study we applied different new above ground test set ups to untreated Norway spruce (Picea abies Karst.) and Scots pine sapwood (Pinus sylvestris L.) which are frequently used as reference or control species in wood durability field tests. The overall aim of this study was to find a simple alternative method to the few standardized above ground field test methods, such as the L-joint a...
C Brischke, L Meyer-Veltrup


Evaluation of field test data
2016 - IRG/WP 16-20594
The resistance against fungal decay and insect attack of wood can be highly variable, between boards and even within boards. The variability in durability is not always an issue, but for high demanding applications information about its reliability is required. This comprises the variability of outdoor performance. Durability testing in laboratory and outdoor exposures can provide a good basis to ...
F Bongers, C Brischke, J Van den Bulcke, W Gard, I De Windt, H Militz


Estimation of wood degradation determined by visual inspection, mechanical testing and DNA characterisation – report after 3 years of exposure
2016 - IRG/WP 16-30700
The influence of two separate treatments, thermal modification and alkaline copper quaternary (ACQ, Silvanolin©) treatment, on fungal decay, visual disfigurement, deterioration in mechanical properties and fungal community structure was assessed on Norway spruce (Picea abies) and compared with the performance of two naturally more resistant tree species native to North America: Douglas fir (Pseud...
N Thaler, T Martinović, M Bajc, D Finžgar, H Kraigher, A Sinha, J J Morrell, M Humar


Laboratory test to determine the effect on durability of combining biobased building materials with timber in construction
2017 - IRG/WP 17-20604
The use of Structural Insulated panels is a construction approach that is seeing more abundant use and is becoming a widely available method. Preformed units are usually a composite structure which often include a range of bio-based materials such as timber, wool or straw. Traditional laboratory based wood decay tests do not take into account this combination of biobased materials and it may be po...
S F Curling, G A Ormondroyd


Monitoring of wood biodeterioration by infrared spectroscopy
2017 - IRG/WP 17-20607
The susceptibility of wood to deterioration by rotting fungi is intrinsically related to its chemical composition and the environmental conditions at its place of use, and if not detected in time, can cause enormous financial losses. The process of wood biodeterioration by decay fungi can be evaluated through laboratory accelerated test, in specific field tests, or through non-destructive techniqu...
E Meneses Oliveira, A Florian da Costa, J W Batista Braga


Possibility of using lichen (Usnea filipendula) and mistletoe (Viscum album L.) extracts as potential natural wood preservative
2017 - IRG/WP 17-30712
Increasing environmental pressures on toxic chemical wood preservatives lead to the development of natural and environmentally friendly wood preservatives. In this study, using possibilities of lichen (Usnea filipendula) and leaves of mistletoe (Viscum album L.) as potential natural wood preservative were researched. Treatment solutions have been prepared with two different solvents, water and met...
Ü C Yildiz, C Kiliç, A Gürgen, S Yildiz


Preliminary Investigation into the Natural Decay Resistance of Nigerian Grown Hevea brasiliensis and Mitragyna ciliata wood to Phanerochaete chrysosporium White-Rot Fungus
2018 - IRG/WP 18-10919
Wood is an important and versatile structural building material that finds applications in numerous uses. However, wood is also a biological material vulnerable to degradation by microbial activities; this is especially true in the tropics. Following the scarcity of highly durable species from our natural forests and the introduction of so many lesser used/durable wood species into the booming tim...
J M Owoyemi, U O Emmanuel


Can CCA be substituted as reference preservative?
2018 - IRG/WP 18-20641
While field testing of wood protective formulations remains probably the best method to find out the effective preservative concentration, the use of chrome-copper arsenate (CCA) as reference becomes debatable due to environmental and legislative reasons. This emerges from the European standardization bodies who have discussed reference alternatives that can omit the use of CCA. The present debate...
N Terziev, M Jebrane, P Larsson Brelid, N Morsing, P-O Flaete, P Torniainen, J S Kim, G Daniel


Impact of water holding capacity and moisture content of soil substrates on the moisture content of wood in terrestrial microcosms
2019 - IRG/WP 19-20662
Terrestrial microcosms (TMC) are frequently used for testing the durability of wood and wood-based materials as well as the protective effectiveness of wood preservatives. In contrary to experiments in soil ecology sciences, the experimental set-up is usually rather simple. However, for service life prediction of wood exposed in ground, it is of immanent interest to better understand the different...
C Brischke, F L Wegener


Development of accelerated decay test for CLT using a fungus grown on agar medium
2019 - IRG/WP 19-20664
CLT is a large-scale wooden board which consists of several layers of sawn lumber stacked in altering directions. Therefore, a lot of large cross sections appear on all narrow faces of CLT. As water penetrates easily into timber from cross section, wooden material whose cross section is exposed to water in in a usage environment is susceptible to deterioration by organisms. Wood deterioration orga...
T Miyauchi, K Kambara, W Ohmura, T Mori, H Matsunaga, N Hattori


Impact of fungal decay on the bending properties of wood
2020 - IRG/WP 20-20671
Wood used outdoors is generally prone to fungal degradation, and its impact on the structural integrity of wood is an immanent factor for service life planning with timber. Wood decayed to very small mass losses can suffer from a significant reduction in mechanical strength and elastic properties. Hence, the latter are preferred indicators to detect decay in wood durability studies. Numerous previ...
S Bollmus, P B van Niekerk, C Brischke


Evaluation of Decay Resistance of Copper-based Preservatives Treated-Wood exposed to different field test sites in Korea
2022 - IRG/WP 22-20679
In Korea, preservative treated wood is required to have a stamp on the surface which contains information such as wood species, use categories, and the company that treated the wood. Such stamping is necessary to safely and appropriately use the treated wood. Since majority of treated wood is being used outdoor environment, the treated wood must have efficacy against wood decay fungi or termite. I...
W-J Hwang, S-M Yoon, Y Park, Y-S Choi, H-M Lee, J-W Kim


Combining MRI and X-ray CT to monitor fungal decay of plywood and OSB in a lab test
2022 - IRG/WP 22-20683
Bio-based building materials, such as wood and wood-engineered products, are susceptible to degradation by decay fungi. In-depth knowledge on the intricate material-fungus relationship as well as performance data for many bio-based building materials are still lacking, and especially knowledge on how a material’s structure and moisture properties affect the degradation process is missing. Althou...
L De Ligne, T Núñez Guitar, C Vanhove, J Van Acker, J Van den Bulcke


Post-layup protection of mass timber elements in above ground protected exposures: 2-year results
2022 - IRG/WP 22-30766
Mass timber has seen increased use as a building material for low and mid-rise construction in recent decades. The durability of mass timber elements has not been fully examined and the effects of wood destroying organisms on this these materials merits attention. The effectiveness of currently labeled soil termiticides and passively applied biocides at post-construction or as remedial agents need...
M E Mankowski, T G Shelton, G T Kirker, J J Morrell


Durability against fungal decay of sorbitol and citric acid (SorCA) modified wood
2022 - IRG/WP 22-40928
Most European-grown wood species are susceptible to biological degradation, specifically, they suffer from a poor resistance against wood-destroying fungi. Therefore, prior to outdoor exposure, wood has to be treated either by applying a protective coating on its surface or by full-volume impregnation with antifungal chemicals. However, due to environmental and health concerns, the most frequently...
K Kurkowiak, L Emmerich, H Militz


Previous Page | Next Page