IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 22 documents.


Biocide Treatments for Wood Composites - A Review
2006 - IRG/WP 06-40323
This paper reviews the biocidal treatment of wood composites. Included are in-process and post-process treatments. Various biocides are covered as are methods of application. Novel treatments and technologies are also presented....
J W Kirkpatrick, H M Barnes


Three years of field tests with "Lignomer" stakes in ground contact
1981 - IRG/WP 3166
The "Lignomer" (Wood Polymer Composite) is a material obtained during the polymerisation of various monomers or its mixtures in wood. As laboratory tests have shown, this material is characterized by a high resistance against biological deteriorating agents. The laboratory investigations on the durability of various materials against biological deterioration are in many instances extended by field...
K Lutomski


Overview of European discussions on Standardisation and list of proposed standards for WPC performance qualification
2006 - IRG/WP 06-20345
The standardisation is a driving force to promote the development of Wood Polymer Composites (WPC) by giving confidence to users and consumers. In Europe, the high interest of WPC require at this time a diffusion of information concerning the performances of WPC products. The WPC performances must be assessed according relevant standards in order to qualify the intrinsic properties of WPC (mechani...
G Labat, M Vernois, T Gay


Testing biological durability of wood-plastic composites
2006 - IRG/WP 06-20347
Testing biological durability is inherently different for wood-plastic composites (WPC) compared to solid timber. However there is clearly a need for more information on the durability of WPC’s, on the effect of decay on the material properties of WPC’s and on methods for assessing decay of WPC’s. For the emerging European WPC market there has been some discussions on how to work on these to...
J Van Acker


Wood plastic composites from modified wood; Part 1 - Conceptual idea, mechanical and physical properties
2006 - IRG/WP 06-40338
Wood plastic composites, WPCs, are rapidly taking shares from preservative treated wood on the decking market. However, the long term performance of the WPC products in this application is uncertain. Therefore, in an attempt to increase the long term performance and durability, the substitution of the unmodified wood component with modified wood has been studied in the work presented in this paper...
P Larsson Brelid, B K Segerholm, M Westin, M E P Wålinder


Wood plastic composites from modified wood. Part 3. Durability of WPCs with bioderived matrix
2008 - IRG/WP 08-40423
The decay resistance of fully bio-derived wood plastic composites, WPCs, was tested in both laboratory and field tests. The laboratory tests were performed according to modified versions of AWPA E10 (soil-block test) and ENV 807 (tests in three un-sterile soils) and the field tests according to EN 252 (stakes in ground) and EN 275 (resistance to marine borers). The WPC materials for laboratory tes...
M Westin, P Larsson Brelid, B K Segerholm, M Van den Oever


Extensive review of fire-retardant wood composites researches
2009 - IRG/WP 09-40471
The increased demand for public safety has led to greater interest in fire retardant materials in the recently years. Legislation relating to safety in the home, in work locations, on transport facilities and in public places continues to produce new regulation. There is average 524 thousand structure fires occurred every year in US, 3757 civilian in death, about 20 thousand civilian in juries, di...
Zhilin Chen, Zhiyong Cai, Feng Fu


Mould growth on wood-based materials – a comparative study
2010 - IRG/WP 10-20455
Ten different wood-based materials - preservative-treated wood, fire retardant-treated wood, modified wood, WPCs and untreated references of pine sapwood and spruce - were tested for mould growth according to SP method 2899 during 42 days at 90% RH and 22°C. Even though the results must be interpreted carefully, they indicate significant differences in mould resistance between the materials tes...
P Johansson, J Jermer


Extruded wood plastic composites based on ACQ and MCQ-treated wood materials
2010 - IRG/WP 10-40495
This paper deals with wood plastic composites manufactured using ACQ and MCQ-treated wood fibers recovered from a wood treatment plant. The goal was to investigate the effect of coupling treatments on the properties of manufactured wood plastic composites (WPCs) through injection molding and to manufacture co-extruded WPC with treated wood fibers. The result demonstrated sound mechanical propertie...
Qinglin Wu, Fei Yao, K Ragon, J Curole, M Voitier, T Shupe


Moisture dynamics of WPC as basis for biological durability
2010 - IRG/WP 10-40520
The largest market for wood-polymer composites (WPCs) is currently decking. Although many products are commercially available, a proper standard for the assessment of the biological durability of WPC does not exist. Recommended standards for testing resistance against basidiomycetes should be completed with a method to bring the specimens in a worst case situation, obtaining a moisture level high ...
N Defoirdt, J Van Acker, J Van den Bulcke


Mould growth on wood-based materials – a simulated in-service study
2012 - IRG/WP 12-20503
Ten different wood-based materials including preservative-treated wood, fire retardant-treated wood, modified wood, WPCs and untreated references of pine sapwood and spruce were placed in three different environments (an attic and two crawl spaces) for a period of 26 months. Mould growth was analysed at five to seven month intervals in an effort to map the growth development. The relative humidit...
G Bok, P Johansson, J Jermer


Resistance of WPC against wood destroying fungi
2013 - IRG/WP 13-40627
The investigation of biological durability is a fundamental topic to assess the performance of Wood Plastic Composites (WPC) particularly for outdoor applications. In the last years, different test setups based on existing standards on the field of wood as well as the field of plastics were used for WPC. But the test methodologies give different information about the durability of the tested mater...
A Gellerich, S Bollmus, A Krause


Conclusions and Summary Report on an Environmental Life Cycle Assessment of ACQ-Treated Lumber Decking with Comparisons to Wood Plastic Composite Decking
2013 - IRG/WP 13-50295
The Treated Wood Council has completed a quantitative evaluation of the environmental impacts associated with the national production, use, and disposition of ACQ (alkaline copper quaternary)-treated lumber decking and wood plastic composite decking using life cycle assessment (LCA) methodologies and following ISO 14044 standards. The results for treated wood decking are significant. • Less En...
AquAeTer, Inc.


Field performance of wood-based decking materials in the Western United States
2014 - IRG/WP 14-30645
While wood has long been used for the construction of decks and other outdoor features, a variety of wood-plastic composite (WPC) decking products have emerged over the past decade with claims of exceptional durability and low maintenance. There are relatively few long term comparative tests on these products. The performance of selected WPC decking products was compared with naturally durable we...
S Lipeh, C S Love, J J Morrell


Some comments on durability testing of WPC according to EN 15534-1
2015 - IRG/WP 15-40695
The standard EN 15534-1 (2014) gives advice for broad characterization of WPC materials and products. It contains instructions for test procedures concerning different properties e.g. mechanical properties, thermal properties, as well as durability. In this paper some WPC materials from the market were tested for their resistance against brown rot. Furthermore, the water uptake and bending prope...
S Bollmus, A Gellerich, H Militz


Fabrication and characterization of MicroPCMs filled wood-plastic composites: Effects of polyethylene glycol on melamine–formaldehyde shell material
2016 - IRG/WP 16-40728
Microencapsulated phase change materials (MicroPCMs) containing dodecanol were fabricated using melamine-formaldehyde (MF) or polyethylene glycol 200 modified melamine-formaldehyde (PMF) resin as the shell materials by in situ polymerization. Wood flour/high-density polyethylene (WF/HDPE) composites with MF shell MicroPCMs (MF-MicroPCMs) or PMF shell MicroPCMs (PMF-MicroPCMs) were prepared, respec...
Xi Guo, Jinzhen Cao


Properties of Wood Plastic Composites Made of Recycled HDPE and Remediated Wood Flour from CCA/CCB Treated Wood Removed from Service
2016 - IRG/WP 16-40747
Chromated copper arsenate (CCA) and copper, chromium and boron (CCB) have been widely used in pressure treated wood as a heavy duty preservative to protect wood against insects and fungi for more than 60 years. Although many attempts have been done to solve the problems related to out-service treated wood, the problem still remains. Only a few studies were done to utilize the out-of service treate...
E D Gezer, S Akbaş, M Tufan, A Temiz


Fungal resistance and accelerated weathering of Wood-Plastic composites reinforced with Maritime pine wood flour
2016 - IRG/WP 16-40750
This study evaluates the durability of wood-polymer composites (WPCs) elaborated for use in cladding application from recycled polypropylene (rPP) and wood flour. Local Maritime pine wood flour derived from regional sawmills was used in the study to reduce the environmental impact associated with transport. Different wood-plastic ratios with and without UV stabilizers and biocide were tested. One ...
M Jebrane, T Fournier, N-E El Bounia, F Charrier-El Bouhtoury


Encapsulation of poles to prevent moisture uptake – a laboratory test
2016 - IRG/WP 16-40753
Premature failure of utility poles due to decay in soil contact is the main reason for early removal of utility poles, a measure that implies extra costs for utilities. Remedial treatments and barriers are common methods to prolong the service life of utility poles. The first part of this paper gives an overview of mode of action and commercial application of barrier systems as described in the li...
K-C Mahnert, U Hundhausen


The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites
2017 - IRG/WP 17-40787
The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood flour and then evaluated for m...
R E Ibach, C M Clemons, G C Chen


Long-term field exposure of wood-plastic composites processed on a commercial-size extruder
2020 - IRG/WP 20-40894
Wood-plastic composites (WPC) contain wood fiber (or flour), thermoplastics and additives and are exposed to UV light, moisture, and biological deterioration in outdoor installations. Accelerated laboratory tests can help to predict the durability of WPCs, but long term evaluations are needed to validate these results. Field exposed above-ground WPC deck boards (30.5 x 139.7 x 609.6 mm) and in-gro...
R E Ibach, C M Clemmons, N M Stark


Service trial of different materials exposed in jetties at Öresund. Progress report No. 5
2022 - IRG/WP 22-30764
This report contains results of the fifth inspection on the performance of different decking materials – preservative-treated wood, modified wood, natural durable wood, re-cycled plastics and wood-plastic composites (WPCs) - available on the market and exposed since 2013 (some since 2014 and 2016) by the City of Malmö in two jetties near the Øresund Bridge, south of central Malmö in Sweden. T...
J Jermer