Your search resulted in 312 documents. Displaying 25 entries per page.
EMC as a quality control parameter for thermally modified wood
2024 - IRG/WP 24-20720
While standards for quality performance of treated wood have been in place for many years, none have been developed for modified wood such as thermally modified wood (TMW). Only in one case has TMW been listed in 2018, by the Nordic Wood Preservation Council (NWPC).
A key component of a quality system is its control parameters, i.e. the metrics that are to be measured and controlled. Existing m...
P Klaas, J T Lauridsen
Exploring bio-based chemicals in the residual stream from the thermal wood modification process
2024 - IRG/WP 24-30799
Numerous chemical-free processes have emerged in the wood processing industry to enhance the durability and optimize the service life of wooden elements exposed to exterior conditions. One such method, the hygrothermolytic modification process, patented as FirmoLin®, represents an industrial treatment for thermal modification of wood. This involves subjecting solid wood to a pressurized unsaturat...
R Herrera, W Willems, W Pajerski, A Selmanović, A Sandak
Properties of thermal modified wood of Pinus pinaster, Pinus radiata and Pinus sylvestris from Galicia, Spain
2024 - IRG/WP 24-30800
This paper provides the results of a research about the properties of thermal modified wood of maritime pine (Pinus pinaster Ait.), radiata pine (Pinus radiata D. Don) and Scots pine (Pinus sylvestris L.) from Galicia, Spain, thermal treated in the industrial vacuum-heat autoclave plant of FINSA group in Galicia, Spain. These three pine wood species are used in different solid products but due the...
D Lorenzo, J Benito, J Arancon, J Crespo
Natural weathering of modified pine and Eucalyptus woods by surface charring
2024 - IRG/WP 24-30801
Within various wood modification techniques, surface charring is anticipated to extend the lifespan of wooden components in building facades; however, visual deterioration of charred cladding materials has become a notable concern. This study, conducted through international collaboration, aimed to assess the resistance of bio-based facade materials to weathering in the Turkish climate. The natura...
E E Soyturk, E N Kavakli, S N Kartal, C M Ibanez
Developing thermal-energy storage systems based on Kraft lignin-glyoxal and organic phase-change material modified wood
2024 - IRG/WP 24-30810
This study investigated the use of modified wood as a thermal-energy storage material through the integration of paraffin-based phase-change materials (PCMs). The objective was to evaluate the influence of Kraft lignin-glyoxal prepolymer on the properties of wood modified with PCMs. The implementation of the modified wood involved preparing PCM emulsions, synthesizing lignin-glyoxal prepolymer, an...
C-F Lin, O Karlsson, D Jones, D Sandberg
Revealing the degradation process of Moso bamboo (Phyllostachys edulis) by different decay fungi
2025 - IRG/WP 25-11060
Moso Bamboo (Phyllostachys edulis) is the main bamboo species for engineering; however, it is highly susceptible to various fungi during use. In this study, four prevalent decay fungi, including two brown rot fungi and two white-rot fungi, were used as the test fungi to investigate the changes in structure and chemical composition of Moso bamboo samples at different incubation times in order to be...
J Xue, D Cui, M Zhou, J Cao
Durability and molecular analysis of fungal communities in wood exposed above ground
2025 - IRG/WP 25-11068
The objective of the study was to explore the durability of wood exposed above ground, comprising a wide diversity of wood species and treatments and extensive assessment data on wood durability in ongoing long-term testing. Larch species and Scots pine heartwood, two tropical species ntholo and ncurri and a number of treated wood by copper-based formulations and alternatives (silanes, spiroborate...
N Högberg, D Panov, G Daniel, N Terziev
The Impact of Drying Techniques on the Quality of Thermally Modified Wood
2025 - IRG/WP 25-30813
The wood drying technique applied before loading the dry wood into the ThermoWood® kiln may affect its properties. For this purpose, Scots pine (Pinus sylvestris) boards were first dried through three drying methods, including radio-frequency/vacuum (RF/V), mild, and moderate conventional drying, and then loaded into a ThermoWood® kiln for thermal modification at 212 °C for 3 hours according to...
M Ghorbanian Far, N Sharifi, A Nikoutadbir, A Tarmian, M Humar
Decay resistance of thermally modified Eucalyptus grandis in closed and open systems
2025 - IRG/WP 25-30815
Thermal modification has been successfully used to improve the durability of Eucalyptus wood from fast-growing forests. Although it is the most common type of modification process, there are some fields for studies on thermally modified wood, particularly about the comparison between processes in closed and open systems. This work aimed to analyse the effect of thermal modification in closed and o...
D C Batista, A C Oliveira Rupf, M Wentzel, C Brischke, H Militz
Mineral-wood composites with improved fire properties and durability prepared through MgCO3-based mineralization
2025 - IRG/WP 25-30823
New mineral-wood composites that demonstrate improved fire properties and higher resistance to selected fungi have been prepared using an environmentally-friendly mineralisation process involving impregnation with an aqueous magnesium acetoacetate solution. MgCO3-based compounds are formed in situ, deep within the wood’s structure. We show that the new mineralisation method overcomes wood’s lo...
A Pondelak, N Knez, S D Škapin, M Humar, A S Škapin
Process Development in Continuous Wood Densification and the Influence of Ionic Liquids on Set-Recovery and Mechanical Properties
2025 - IRG/WP 25-30827
The densification of wood significantly enhances its mechanical properties, making low-density species more viable for high-performance applications. However, challenges such as set-recovery (SR) and production speed hinder large-scale adoption. This study investigates continuous surface densification using a custom-built belt press and examines the effect of chemical pre-treatment with ionic liqu...
D Jones, A Scharf, B Neyses, D Sandberg
Investigation of Impregnation Factors for Biomass-Based Phenol-Formaldehyde Resins
2025 - IRG/WP 25-41044
This study investigates the impregnation factors affecting the treatment of wood with biomass-based phenol-formaldehyde (PF) resins, such as impregnation methods, resin properties, and setting parameters like time and pressure. The goal is to ensure effective resin penetration into the wood cell wall structure, thereby enhancing wood durability and mechanical properties. Previous literature has la...
Y-C Huang, T-H Lin, P-Y Kuo