IRG Documents Database and Compendium


Search and Download IRG Documents:



Between and , sort by


Displaying your search results

Your search resulted in 733 documents. Displaying 25 entries per page.


IRG soft-rot stake test - Site 03 Australia. Progress Report No. 3
1982 - IRG/WP 3202
The performance of test stakes was examined after four (4) years. Hardwood stakes treated with CCA showed significant soft-rot attack. The exception to this was Alstonia scholaris which was similar in performance to Pinus sylvestris. A supplementary test containing stakes treated with CBC, PCP and creosote, showed attack in all hardwoods examined. Little decay was found in stakes of Pinus sylvestr...
L E Leightley, R S Johnstone


Some statistics on the Brazilian Wood Preservation Industry: 1980-81
1982 - IRG/WP 3214
Statistical data on the production of pressure treated wood and on the consumption of wood preservatives are given for the years of 1980 and 1981 in Brazil....
M S Cavalcante, F C Geraldo, A R De Freitas


Disposal of treated wood - Canada
1990 - IRG/WP 3563
It is estimated that treated wood removed from service each year in Canada contains about 16,000 tonnes of creosote, 1000 tonnes of pentachlorophenol and 245 tonnes of CCA or ACA. The amount of CCA treated wood for disposal is expected to increase more than ten-fold by the year 2020. At present, most treated wood is disposed of in landfills, burned (creosote only) or recycled as other products. Ot...
P A Cooper


Copper based water-borne preservatives: The biological performance of wood treated with various formulations
1987 - IRG/WP 3451
Wood samples treated with the various components of CCA preservative singly and in combination were tested against a soft rot organism, a copper tolerant brown rot organism and in soil burial both unleached and after leaching. The results suggest that, of the elements tested, fixed copper is essential for preventing soft rot attack and fixed arsenic is essential for preventing attack by a copper t...
S M Gray, D J Dickinson


Wood preservation and the environment: A Canadian perspective
1990 - IRG/WP 3577
The non-pressure (surface) and pressure treatment of wood impacts on the environment in four ways. These are: through the production of treated wood at sawmills and pressure treating facilities; during the storage of treated wood prior to use; when the pressure treated wood is placed in service; and finally, when the treated product reaches the end of its useful life and must be disposed. By refer...
J N R Ruddick


In ground contact field trial results of preservative treated incised and unincised spruce
1996 - IRG/WP 96-40076
Field trials of treated spruce stakes have been demonstrated that incising the stake before treatment improves the preservative uptake both for CCA and creosote. This results in a substantially extended service life for the incised stakes over the unincised stakes for preservative concentrations at commercial levels. After 24 years in ground contact the majority of incised spruce samples are sound...
E D Suttie


Lignin-copper, a new wood preservative without arsenic and chromium
1992 - IRG/WP 92-3702
A more environmentally sound treatment for wood with preservatives containing no arsenic or chromium, has been developed and studied on a laboratory scale. The method involves a first step impregnation with an aqueous solution containing modified, water-soluble kraft lignin followed by a second step involving impregnation with a copper salt solution to give fixation of the lignin into a water-inso...
B Ohlsson, R Simonson


A field test with anti-sapstain chemicals on sawn pine timber in Finland
1986 - IRG/WP 3368
Fourteen formulations, each in two concentrations, were tested for effectiveness against sapstain, mould and decay on Scots pine (Pinus sylvestris L.) in a field test in South-Finland. The trial was commenced in June 1985 and finished in October 1985. During the test the boards were infected mainly by mould fungi. In kiln dried boards the protective effects of nine and in green boards of four trea...
L Paajanen


36 years of wood preservative tests in Tanzania
1992 - IRG/WP 92-3731
The performanee of major wood presevatives which are used widely commereially are given. These include creosote, CCA's and 5% Pentachlorophenol dissolved in heavy industrial diesel. Tests are conducted at three ecologically different using pine stakes. Results show that the striking performance of creosote and CCA's is noticeable at above 128 kg/m³ and 16 kg/m³ respectively....
K K Murira, P F Nangawe


Copper binding capacity of modified wood flour
1992 - IRG/WP 92-3709
Wood flour was modified by reaction with oxidising agents and CCA preservative. The copper chromium and arsenic were removed from the CCA treated wood flour by an acid leaching procedure. The modified wood flours were allowed to react with copper acetate solution and the level of copper fixation achieved was determined. The modified wood flours had greater affinity for copper ions present in solut...
N C Milowych, W B Banks, J A Cornfield


HCB - a new preservative combination for wood pole maintenance
1996 - IRG/WP 96-30122
New combination of heavy creosoted boron (HCB) applied on hardwood and softwood logs at different moisture content revealed successful diffusion of boron in all sapwoods within 7 days and in all sapwoods plus hardwoods within 15 days. The new cost effective paste sterilizes wood through diffusion and suitable for pole maintenance at groundline and above groundline e.g. cut ends, drilled holes, woo...
A K Lahiry


Biological effectiveness of ground-contact wood preservatives as determined by field exposure stake tests
1984 - IRG/WP 3297
Field exposure tests conducted on stakes treated with different creosotes, mixtures of creosote and waxy oil as well as different CCA wood preservatives over a period of 25 years, gave the following results: The CCA preservatives provided excellent biological protection to treated stakes, especially against fungal attack. The CCA Type I, currently approved for use under South African conditions is...
W E Conradie, A Pizzi


The use of chlorothalonil for protection against mold and sapstain fungi. Part 1: Laboratory evaluation
1989 - IRG/WP 3515
Laboratory screening of chlorothalonil alone and in combination with other fungicides was conducted against six mold and sapstain fungi. The most promising treatments appear to be chlorothalonil supplemented with CCA or copper-8-quinolinolate. Field tests have been implemented....
J A Micales, T L Highley, A L Richter


Assessment of contamination of soil and water at a CCA treatment plant: A demonstration project
1996 - IRG/WP 96-50067
Soil, sludge, dust and water samples were collected at a copper/chromium/arsenic wood preservation plant. Contamination of soil, sludge, dust and surface water with copper, chromium and arsenic was detected. Levels of contamination were sufficiently high to require remediation. Contamination originated from preservative solution dripping from recently treated wood. Migration of contaminants was vi...
P N Durrant, D C R Sinclair, G M Smith


The effective control of moulds on freshly impregnated wood
2004 - IRG/WP 04-30352
Beside natural timber it is known, that moulds can also groth at the surface of impregnated wood. This material shows “defects” like resistant dark spots or color changes and causes complaints. During the last years, the problem by moulds seems to increase. Laboratory studies were carried out to show the effect of impregnations against moulds. Wood samples (Pinus sylvestris L.) were impregn...
G Cofta, K Lutomski, P Jüngel


Restriction for use and waste management for pressure treated wood - The current situation in Norway
2001 - IRG/WP 01-50175
The Norwegian Environmental Authorities have this winter sent out a draft on restrictions in production and use of heavy metals in preservative treated timber. If it is passed, it will lead to drastic changes in the use of preservatives in Norway from this autumn. The environmental authorities and the preservative industry are both at present discussing waste management for CCA and creosote treate...
F G Evans


Use of the Pilodyn to assess deterioration of treated aspen waferboard after 30 months of outdoor exposure
1986 - IRG/WP 2254
Samples of preservative treated aspen waferboard exposed outdoors for 30 mo. were compared using pin penetrations of the 6 Joule Pilodyn. These results correlated well with rankings of treatment performance based on more laborious standard mechanical tests, and demonstrate the potential for use of the Pilodyn as a tool to evaluate wood composites in test exposures with minimal destruction....
E L Schmidt, M G Dietz


Fixation of CCA in Pinus sylvestris after kiln-drying
1990 - IRG/WP 3594
Tanalith C Paste is 98% fixed and Tanalith Oxide C is 99% fixed irrespective of whether treated Pinus sylvestris is kiln or air dried. A schedule suitable for kiln drying of CCA treated Pinus sylvestris is described....
P Warburton, J A Cornfield, D A Lewis, D G Anderson


Oxalic acid production of fifteen brown-rot fungi in copper citrate- treated southern yellow pine
2001 - IRG/WP 01-10388
Non-arsenical copper-based wood preservatives have grown in number since the 1980's as a response to environmental concerns posed by arsenicals. Interest in copper tolerant decay fungi has increased accordingly. Oxalic acid (OA) production by brown-rot fungi has been proposed as one mechanism of copper tolerance. Fifteen brown-rot fungi representing the genera Postia, Wolfiporia, Serpula,...
F Green III, C A Clausen


Creosote immersion treatments in fence-posts of Castanea sativa, Pinus nigra and Pinus halepensis
1988 - IRG/WP 3488
The method of soaking in creosote was applied to fenceposts of Castanea sativa, Pinus nigra and Pinus halepensis, taking into account its easy use in the field. Absorption, retention and penetration rates were recorded and analysed. Absorption rates were higher in Pinus nigra than in Pinus halepensis, and lowest in Castanea sativa. Thin fence-posts always absorbed more preservative than thick ones...
C De Arana Moncada


Metal carboxylates for wood pest control
1996 - IRG/WP 96-30109
Metal carboxylates have been used as wood preservatives for more than fifty years. Predominantly salts of naphtenic acids have been commercially applied so far. They have water repellent as well as fungicidal and insecticidal properties. In the last years, metal carboxylates of saturated fatty acids were introduced. Fatty acids with 7-10 carbon atoms already have fungicidal activity by themselves....
F Pohleven, M Petric


Performance of chromated copper arsenate-treated aspen fence posts installed in Forintek's Eastern test plot from 1951 to 1963
1984 - IRG/WP 3272
Aspen poplar fence posts were pressure treated by the full cell process using three formulations of copper chrome arsenate wood preservative. A total of one hundred and fifty nine of the posts were installed in service in Forintek's Chalk River post plot from 1951 to 1962. During the 1982 general inspection of the post plot all 159 posts were still in service. A groundline inspection was ...
C D Ralph


Recycling of impregnated timber: Part 2: Combustion trial
1999 - IRG/WP 99-50132
Totally 270 m3 (61,3 t) of CCA impregnated wood was chipped and incinerated at the combustion plant of Jalasjärvi. After the normal gas cleaning venture scrubbers were tested. After the trial a metal balance was calculated. Ash was treated at the copper smelter of Outokumpu Harjavalta Metals Oy. Condensate waters were transfered to the Outokumpu's CCA production plant and utilized by the...
L Lindroos


Co-operative research at the Naval Research Laboratory on wood extractives and related compounds as antiborer agents
1977 - IRG/WP 429
J D Bultman, K K Parrish


The secondary treatment of creosoted electricity poles with fused boron rods
1988 - IRG/WP 3485
After preliminary trials selected poles were treated at the groundline with fused boron rods. Early samplings showed that movement was slow in the dry heartwood but after six years the distributions obtained indicate that the system has merit for the treatment of the heartwood of poles in service....
D J Dickinson, P I Morris, B Calver


Previous Page | Next Page