Your search resulted in 56 documents. Displaying 25 entries per page.
A novel cellulose-binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11019
Wood-rotting basidiomycetes are the major organisms decomposing wood in nature. They are classified into two groups based on their decay modes; white-rot fungi and brown-rot fungi. White-rot fungi secrete various cellulolytic enzymes during the wood degradation process. The enzymes are known to be often appended with a cellulose binding domain (CBD) which assists the activity of catalytic domain. ...
Y Kojima, N Sunagawa, M Aoki, M Wada, K Igarashi, M Yoshida
The cellulose binding mechanism of a novel cellulose binding domain from the brown-rot fungus Gloeophyllum trabeum
2023 - IRG/WP 23-11021
In nature, wood decay is caused by various wood-rotting basidiomycetes. Wood-rotting basidiomycete are mainly divided into white-rot fungi and brown-rot fungi. Their main carbon source is cellulose of the wood cell wall during wood decay, and they produce a variety of enzymes to decompose cellulose. The cellulolytic enzymes often possess a cellulose binding domain (CBD) as an additional domain con...
M Aoki, Y Kojima, M Wada, M Yoshida
Cellulose nanomaterials in growth media for wood decay fungi
2024 - IRG/WP 24-11035
Cellulose nanofibrils (CNFs) were investigated as a partial substitution for agar in growth media for wood decay fungi. Radial growth measurements of eight basidiomycete fungi were taken on solid growth media with and without CNFs. Additionally, fungal strain virulence was evaluated using the European CSN Standard EN 113-2 wood decay durability test. The inclusion of CNFs did not significantly aff...
K M Ohno, R A Arango, R Sabo, C M Clemons, G T Kirker, A B Bishell
Cellulose nanomaterials in growth media for wood decay fungi
2024 - IRG/WP 24-11035
Cellulose nanofibrils (CNFs) were investigated as a partial substitution for agar in growth media for wood decay fungi. Radial growth measurements of eight basidiomycete fungi were taken on solid growth media with and without CNFs. Additionally, fungal strain virulence was evaluated using the European CSN Standard EN 113-2 wood decay durability test. The inclusion of CNFs did not significantly aff...
K M Ohno, R A Arango, R Sabo, C M Clemons, G T Kirker, A B Bishell
A novel cellulose-binding domain from the brown-rot fungus that can be used to evaluate cellulose in wood
2024 - IRG/WP 24-11046
Wood-rotting basidiomycetes are the primary microorganisms that decay wood in nature. They are classified as white-rot fungi and brown-rot fungi by the difference in decaying types. White-rot fungi secrete a variety of cellulolytic enzymes during wood degradation. These enzymes often have an additional cellulose-binding domain (CBD) that adsorbs to the cellulose surface and localizes the catalytic...
Y Kojima, N Sunagawa, S Tagawa, T Hatano, S Nakaba, M Aoki, M Wada, K Igarashi, M Yoshida
Binder-free, fire-resistant, light-weight fiberboard materials encrusted with expandable graphite and borax
2024 - IRG/WP 24-20714
Despite abundant data on innovative fire protection technologies tailored for wood and lignocellulosic materials, the prevailing approach revolves around the formulation of fire retardant solutions employing water-soluble salts, e.g., phosphorus or boron compounds. On the other hand, additives fostering the formation of a char layer during the combustion of lignocellulosic materials as a non-leach...
W Perdoch, W GrzeĊkowiak, B Mazela